Potential In Vivo UVC Disinfection of Catheter Lumens: Estimation of the Doses Received by the Blood Flow Outside the Catheter Tip Hole - DTU Orbit (10/12/2018)

Potential In Vivo UVC Disinfection of Catheter Lumens: Estimation of the Doses Received by the Blood Flow Outside the Catheter Tip Hole

We have demonstrated that it is possible to launch UVC LED light into bacterial contaminated polymer tubes/catheters and disinfect the intraluminal space of these tubes. This can be achieved by UVC treatment of the catheters on a regular basis. Catheters are in the distal end equipped with an exit hole for administration of drugs, bloods or nutrients into the bloodstream. Even if the UVC light is strongly attenuated during its propagation through the catheter tube a fraction of the UVC launched into the catheter will escape through the exit hole and irradiate the blood. We demonstrate by calculations that very small effective doses are exposed to the blood (ca 10^{-4} J m^{-2}). This dosage level is very low compared with UVC doses reported from other therapeutic applications. The very short residence time of the blood constituents in the irradiated volume in front of the exit hole is the main reason why the UVC exposure to the blood in the catheter application is so low. The very low dose received by the blood through the catheter tip indicated that possible side effects are negligible and makes the UV disinfection technique feasible in a clinical setting.

General information
State: Published
Organisations: Optical Sensor Technology, Department of Photonics Engineering, Teraherts Technologies and Biophotonics, Laser- und Medizin-Technologie GmbH, Blood Center of the German Red Cross, Universidad Popular Autónoma del Estado de Puebla
Pages: 350-356
Publication date: 2011
Peer-reviewed: Yes

Publication information
Journal: Photochemistry and Photobiology
Volume: 87
Issue number: 2
ISSN (Print): 0031-8655
Ratings:
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 1.99 SJR 0.591 SNIP 0.723
 Web of Science (2017): Impact factor 2.214
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 1.91 SJR 0.601 SNIP 0.774
 Web of Science (2016): Impact factor 2.121
 BFI (2015): BFI-level 1
 Scopus rating (2015): CiteScore 2.13 SJR 0.62 SNIP 0.764
 Web of Science (2015): Impact factor 2.008
 BFI (2014): BFI-level 1
 Scopus rating (2014): CiteScore 2.28 SJR 0.761 SNIP 0.977
 Web of Science (2014): Impact factor 2.266
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 2.45 SJR 0.753 SNIP 0.944
 Web of Science (2013): Impact factor 2.684
 ISI indexed (2013): ISI indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 2.33 SJR 0.815 SNIP 0.91
 Web of Science (2012): Impact factor 2.287
 ISI indexed (2012): ISI indexed yes
 BFI (2011): BFI-level 1
 Scopus rating (2011): CiteScore 2.54 SJR 0.955 SNIP 0.968
 Web of Science (2011): Impact factor 2.413
 ISI indexed (2011): ISI indexed yes