Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation - DTU Orbit (13/11/2018)

Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation

The growing genomic information on non-model organisms eases exploring the evolutionary history of biodiversity. This is particularly true for Drosophila flies, in which the number of sequenced species doubled recently. Because of its outstanding diversity of species, Drosophila has become one of the most important systems to study adaptive radiation. In this study, we performed a genome-wide analysis of positive diversifying selection on more than 2000 single-copy orthologous groups in 25 species using a recent method of increased accuracy for detecting positive diversifying selection. Adopting this novel approach enabled us to find a consistent selection signal throughout the genus Drosophila, and a total of 1342 single-copy orthologous groups were identified with a putative signal of positive diversifying selection, corresponding to 1.9% of all loci. Specifically, in lineages leading to D. grimshawi, a strong putative signal of positive diversifying selection was found related to cell, morphological, neuronal, and sensorial development and function. A recurrent signal of positive diversifying selection was found on genes related to aging and lifespan, suggesting that selection had shaped lifespan diversity in Drosophila, including extreme longevity. Our study, one of the largest and most comprehensive ones on genome-wide positive diversifying selection to date, shows that positive diversifying selection has promoted species-specific differentiation among evolutionary lineages throughout the Drosophila radiation. Acting on the same biological processes via different routes, positive diversifying selection has promoted diversity of functions and adaptive divergence.

General information

State: Published
Organisations: Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Immunoinformatics and Machine Learning, University of Innsbruck
Contributors: Cicconardi, F., Marcatili, P., Arthofer, W., Schlick-Steiner, B. C., Steiner, F. M.
Pages: 230-243
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Molecular Phylogenetics and Evolution
Volume: 112
ISSN (Print): 1055-7903
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.23 SJR 2.088 SNIP 1.9
Web of Science (2017): Impact factor 4.412
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4.34 SJR 2.246 SNIP 2.106
Web of Science (2016): Impact factor 4.419
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.85 SJR 2.262 SNIP 1.751
Web of Science (2015): Impact factor 3.792
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.99 SJR 2.327 SNIP 1.926
Web of Science (2014): Impact factor 3.916
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.05 SJR 1.963 SNIP 1.841
Web of Science (2013): Impact factor 4.018
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 4.04 SJR 2.163 SNIP 2.043
Web of Science (2012): Impact factor 4.066
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.62 SJR 2.014 SNIP 1.758
Web of Science (2011): Impact factor 3.609
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.006 SNIP 1.932
Web of Science (2010): Impact factor 3.889
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.312 SNIP 1.948
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.117 SNIP 2.08
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 2.154 SNIP 2.024
Scopus rating (2006): SJR 2.295 SNIP 1.858
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 2.051 SNIP 1.834
Scopus rating (2004): SJR 2.351 SNIP 2.09
Scopus rating (2003): SJR 1.719 SNIP 1.625
Scopus rating (2002): SJR 1.971 SNIP 1.689
Scopus rating (2001): SJR 2.362 SNIP 1.759
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.253 SNIP 2.025
Scopus rating (1999): SJR 2.601 SNIP 1.683
Original language: English
Keywords: Adaptation, Development and Evolution, Ecological Genetics, Genomics/Proteomics, Molecular Evolution, Positive selection
Electronic versions:
1_s2.0_S1055790316303797_main_1_.pdf
DOIs:
10.1016/j.ympev.2017.04.023

Bibliographical note
Under a Creative Commons license
Source: FindIt
Source-ID: 2358076532
Research output: Research - peer-review › Journal article – Annual report year: 2017