Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation - DTU Orbit (23/05/2017)

Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation

The growing genomic information on non-model organisms eases exploring the evolutionary history of biodiversity. This is particularly true for Drosophila flies, in which the number of sequenced species doubled recently. Because of its outstanding diversity of species, Drosophila has become one of the most important systems to study adaptive radiation. In this study, we performed a genome-wide analysis of positive diversifying selection on more than 2000 single-copy orthologous groups in 25 species using a recent method of increased accuracy for detecting positive diversifying selection. Adopting this novel approach enabled us to find a consistent selection signal throughout the genus Drosophila, and a total of 1342 single-copy orthologous groups were identified with a putative signal of positive diversifying selection, corresponding to 1.9% of all loci. Specifically, in lineages leading to D. grimshawi, a strong putative signal of positive diversifying selection was found related to cell, morphological, neuronal, and sensorial development and function. A recurrent signal of positive diversifying selection was found on genes related to aging and lifespan, suggesting that selection had shaped lifespan diversity in Drosophila, including extreme longevity. Our study, one of the largest and most comprehensive ones on genome-wide positive diversifying selection to date, shows that positive diversifying selection has promoted species-specific differentiation among evolutionary lineages throughout the Drosophila radiation. Acting on the same biological processes via different routes, positive diversifying selection has promoted diversity of functions and adaptive divergence.

General information
State: Accepted/In press
Organisations: Center for Biological Sequence Analysis, Department of Bio and Health Informatics, Immunoinformatics and Machine Learning, University of Innsbruck
Authors: Cicconardi, F. (Ekstern), Marcatili, P. (Intern), Arthofer, W. (Ekstern), Schlick-Steiner, B. C. (Ekstern), Steiner, F. M. (Ekstern)
Number of pages: 53
Publication date: 2017
Main Research Area: Technical/natural sciences

Publication information
Journal: Molecular Phylogenetics and Evolution
ISSN (Print): 1055-7903
Ratings:
BFI (2017): BFI-level 2
BFI (2015): BFI-level 2
Scopus rating (2015): SJR 2.287 SNIP 1.701
BFI (2014): BFI-level 2
Scopus rating (2014): SJR 2.312 SNIP 1.892
BFI (2013): BFI-level 2
Scopus rating (2013): SJR 1.952 SNIP 1.866
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): SJR 2.154 SNIP 2.058
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): SJR 2.009 SNIP 1.761
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.989 SNIP 1.928
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.282 SNIP 1.935
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 2.098 SNIP 2.098
Scopus rating (2007): SJR 2.125 SNIP 2.014
Scopus rating (2006): SJR 2.246 SNIP 1.852
Scopus rating (2005): SJR 2.002 SNIP 1.848
Scopus rating (2004): SJR 2.309 SNIP 2.064
Scopus rating (2003): SJR 1.686 SNIP 1.624
Scopus rating (2002): SJR 1.743 SNIP 1.7