Position Mooring Control Based on a Structural Reliability Criterion

To prevent failure of mooring lines in modern position mooring (PM) systems, position moored vessels are kept within a small distance from a desired reference position. A safe position within such region is where stress in all mooring lines are kept well below tensile strength. To prevent several mooring lines simultaneously from exceeding a stress threshold, this paper suggests a new algorithm to determine the reference position and an associated control system. The safety of each line is assessed through a structural reliability index. A reference position where all mooring lines are safe is achieved using structural reliability indices in a cost function, where both the mean mooring-line tension and dynamic effects are considered. An optimal set-point is automatically produced without need for manual interaction. The parameters of the extreme value distribution are calculated on-line thereby adapting the set-point calculations to the prevailing environment. In contrast to earlier approaches, several mooring line are simultaneously accounted for by the algorithm, not only the most critical one. Detailed simulations illustrate the features of the new method and it is shown that the structural reliability criterion based algorithm ensures the safety of mooring lines in a variety of external environmental conditions and also in situations of failure of a single line.

General information
State: Published
Organisations: Department of Electrical Engineering, Automation and Control, Norwegian University of Science and Technology
Contributors: Fang, S., Leira, B. J., Blanke, M.
Pages: 97–106
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Structural Safety
Volume: 41
ISSN (Print): 0167-4730
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.86 SJR 1.899 SNIP 2.58
Web of Science (2017): Impact factor 3.538
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.15 SJR 1.615 SNIP 2.329
Web of Science (2016): Impact factor 2.99
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.7 SJR 1.408 SNIP 2.298
Web of Science (2015): Impact factor 2.086
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.89 SJR 1.529 SNIP 2.698
Web of Science (2014): Impact factor 1.675
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.06 SJR 2.477 SNIP 3.234
Web of Science (2013): Impact factor 2.391
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.13 SJR 2.609 SNIP 3.451
Web of Science (2012): Impact factor 1.84
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 3.22 SJR 1.962 SNIP 3.381
Web of Science (2011): Impact factor 1.867
ISI indexed (2011): ISI indexed yes