Polyphasic data support the splitting of Aspergillus candidus into two species; proposal of Aspergillus dobrogensis sp. nov. - DTU Orbit (09/01/2019)

Polyphasic data support the splitting of *Aspergillus candidus* into two species; proposal of *Aspergillus dobrogensis* sp. nov. *Aspergillus candidus* is a species frequently isolated from stored grain, food, indoor environments, soil and occasionally also from clinical material. Recent bioprospecting studies highlighted the potential of using *A. candidus* and its relatives in various industrial sectors as a result of their significant production of enzymes and bioactive compounds. A high genetic variability was observed among *A. candidus* isolates originating from various European countries and the USA, that were mostly isolated from indoor environments, caves and clinical material. The *A. candidus sensu lato* isolates were characterized by DNA sequencing of four genetic loci, and agreement between molecular species delimitation results, morphological characters and exometabolite spectra were studied. Classical phylogenetic methods (maximum likelihood, Bayesian inference) and species delimitation methods based on the multispecies coalescent model supported recognition of up to three species in *A. candidus sensu lato*. After evaluation of phenotypic data, a broader species concept was adopted, and only one new species, *Aspergillus dobrogensis*, was proposed. This species is represented by 22 strains originating from seven countries (ex-type strain CCF 4651T =NRRL 52821T =IBT 32697T =CBS 143370T) and its differentiation from *A. candidus* is relevant for bioprospecting studies because these species have different exometabolite profiles. Evaluation of the antifungal susceptibility of section *Candidi* members to six antifungals using the reference EUCAST method showed that all species have low minimum inhibitory concentrations for all tested antifungals. These results suggest applicability of a wide spectrum of antifungal agents for treatment of infections caused by species from section *Candidi*.

General information

State: Published
Organisations: Department of Biotechnology and Biomedicine, Fungal Chemodiversity, Czech Academy of Sciences, Charles University, Statens Serum Institut, Universidad Rovira i Virgili, EMSL Analytical, Inc., Westerdijk Fungal Biodiversity Institute, Faculdade de Medicina de Sao Jose do Rio Preto
Pages: 995-1011
Publication date: 2018
Peer-reviewed: Yes

Publication information

Journal: International Journal of Systematic and Evolutionary Microbiology
Volume: 68
ISSN (Print): 1466-5026
Ratings:
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 1
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 1
- Scopus rating (2017): CiteScore 2.29 SJR 0.943 SNIP 1.194
- Web of Science (2017): Impact factor 1.932
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 1
- Scopus rating (2016): CiteScore 2.22 SJR 0.892 SNIP 1.164
- Web of Science (2016): Impact factor 2.134
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 2.74 SJR 1.098 SNIP 1.484
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 2.42 SJR 0.952 SNIP 1.174
- Web of Science (2014): Impact factor 2.511
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 2.57 SJR 0.996 SNIP 1.564
- Web of Science (2013): Impact factor 2.798
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.96 SJR 1.084 SNIP 1.203
Web of Science (2012): Impact factor 2.112
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.2 SJR 1.105 SNIP 1.349
Web of Science (2011): Impact factor 2.268
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.056 SNIP 1.195
Web of Science (2010): Impact factor 1.93
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.955 SNIP 1.251
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.068 SNIP 1.344
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.103 SNIP 1.585
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.394 SNIP 1.554
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.565 SNIP 1.579
Web of Science (2005): Indexed yes
Scopus rating (2004): SJR 1.932 SNIP 1.858
Scopus rating (2003): SJR 1.809 SNIP 1.829
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 1.964 SNIP 1.736
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 1.793 SNIP 1.645
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 2.137 SNIP 1.981
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 2.26 SNIP 1.948
Original language: English
Keywords: Antifungal susceptibility testing, Antioxidant compounds, Bioprospecting, Cave mycobiota, Indoor fungi, Multispecies coalescence model
DOIs: 10.1099/ijsem.0.002583
Source: PublicationPreSubmission
Source-ID: 147511685
Research output: Research - peer-review; Journal article – Annual report year: 2018