Polynomial weights and code constructions

Publication: Research - peer-reviewJournal article – Annual report year: 1973

Documents

View graph of relations

For any nonzero elementcof a general finite fieldGF(q), it is shown that the polynomials(x - c)^i, i = 0,1,2,cdots, have the "weight-retaining" property that any linear combination of these polynomials with coefficients inGF(q)has Hamming weight at least as great as that of the minimum degree polynomial included. This fundamental property is then used as the key to a variety of code constructions including 1) a simplified derivation of the binary Reed-Muller codes and, for any primepgreater than 2, a new extensive class ofp-ary "Reed-Muller codes," 2) a new class of "repeated-root" cyclic codes that are subcodes of the binary Reed-Muller codes and can be very simply instrumented, 3) a new class of constacyclic codes that are subcodes of thep-ary "Reed-Muller codes," 4) two new classes of binary convolutional codes with large "free distance" derived from known binary cyclic codes, 5) two new classes of long constraint length binary convolutional codes derived from2^r-ary Reed-Solomon codes, and 6) a new class ofq-ary "repeated-root" constacyclic codes with an algebraic decoding algorithm.
Original languageEnglish
JournalI E E E Transactions on Information Theory
Publication date1973
Volume19
Issue1
Pages101-110
ISSN0018-9448
StatePublished

Bibliographical note

Copyright 1973 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 4637281