Polymeric nanosensors for measuring the full dynamic pH range of endosomes and lysosomes in mammalian cells

Publication: Research - peer-reviewJournal article – Annual report year: 2009

View graph of relations

Polymer nanoparticle sensors have been constructed for studying pH in the endocytic pathway in mammalian cells. The pH sensors for fluorescence ratiometric measurements were prepared using inverse microemulsion polymerization with rhodamine as reference fluorophor and fluorescein and oregon green as pH sensitive dyes, which gave a dynamic pH measurement range from 4.1-7.5. Thus, the sensors cover the pH range of almost all intracellular compartments in mammalian cells. Both neutral and cationic polyacrylamide particles were synthesized where (3-acrylamidopropyl) trimethylammonium chloride was used to introduce a net positive charge in the cationic particles. It was found that the positively charged particle sensors were internalized spontaneously by HepG2 cancer cells. These new pH nanosensors are potential tools in time resolved quantification of pH in the endocytic pathway of living cells.
Original languageEnglish
JournalJournal of Biomedical Nanotechnology
Publication date2009
Volume5
Issue6
Pages676-682
ISSN1550-7033
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 15
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 4348704