Crude glycerol, a by-product from the biodiesel industry, can be converted by mixed microbial consortia into 1,3-propanediol (1,3-PDO) and volatile fatty acids. In this study, further conversion of these main products into polyhydroxyalkanoates (PHA) was investigated with the focus on 1,3-PDO. Two different approaches for the enrichment of PHA accumulating microbial consortia using an aerobic dynamic feeding strategy were applied. With the first approach, where nitrogen was present during the whole cycle, no net production of PHA from 1,3-PDO was observed in the fermented effluent, not even in a nitrogen-limited PHA accumulation assay. Nevertheless, experiments in synthetic substrates revealed that the conversion of 1,3-PDO to PHA was possible under nitrogen limiting conditions. Thus, a different enrichment strategy was formulated where nitrogen was limited during the feast phase to stimulate the storage response. Nitrogen was still supplied during the famine phase. With the latter strategy, a net production of PHA from 1,3-PDO was observed at a yield of 0.24 Cmol PHA/Cmol 1,3-PDO. The overall yield from the fermented effluent was 0.42 Cmol PHA/Cmol substrate. Overall, the PHA yield from 1,3-PDO seemed to be limited, similarly to when using glycerol as a substrate, by a decarboxylation step and accumulation of other storage polymers such as glycogen, and possibly, lipid inclusions.