Poly I-lactide-layered double hydroxide nanocomposites via in situ polymerization of I-lactide

Publication: Research - peer-reviewJournal article – Annual report year: 2010

View graph of relations

The use of clay nanofillers offers a potential route to improved barrier properties in polylactide films. Magnesium–aluminium layered double hydroxides (LDHs) are interesting in this respect and we therefore explored synthesis of PLA-LDH nanocomposites by ring-opening polymerization. This method is attractive because it should ensure good dispersion of LDH in the polymer. The effect of adding either LDH carbonate (LDH-CO3) or laurate-modified LDH (LDH-C12) was investigated. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy revealed that exfoliated nanocomposites were obtained when using LDH-C12 but that LDH-CO3 gave a partly phase-separated morphology. Thermogravimetric analysis showed that PLA-LDH combinations exhibited higher degradation onset temperatures and differential scanning calorimetry confirmed that LDHs can act as nucleating agents. However, PLA molecular weight was significantly reduced when in-situ polymerization was conducted in the presence of the LDHs and we suggest that chain termination via LDH surface hydroxyl groups and/or metal-catalyzed degradation could be responsible.
Original languageEnglish
JournalPolymer Degradation and Stability
Publication date2010
Volume95
Issue12
Pages2563-2573
ISSN0141-3910
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 22

Keywords

  • Biopolymers, Solar energy
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5167567