PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens

(23/10/2018)

PointFinder: a novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens

Background

Antibiotic resistance is a major health problem, as drugs that were once highly effective no longer cure bacterial infections. WGS has previously been shown to be an alternative method for detecting horizontally acquired antimicrobial resistance genes. However, suitable bioinformatics methods that can provide easily interpretable, accurate and fast results for antimicrobial resistance associated with chromosomal point mutations are still lacking.

Methods

Phenotypic antimicrobial susceptibility tests were performed on 150 isolates covering three different bacterial species: Salmonella enterica, Escherichia coli and Campylobacter jejuni. The web-server ResFinder-2.1 was used to identify acquired antimicrobial resistance genes and two methods, the novel PointFinder (using BLAST) and an in-house method (mapping of raw WGS reads), were used to identify chromosomal point mutations. Results were compared with phenotypic antimicrobial susceptibility testing results. Results

A total of 685 different phenotypic tests associated with chromosomal resistance to quinolones, polymyxin, rifampicin, macrolides and tetracyclines resulted in 98.4% concordance. Eleven cases of disagreement between tested and predicted susceptibility were observed: two C. jejuni isolates with phenotypic fluoroquinolone resistance and two with phenotypic erythromycin resistance and five colistin-susceptible E. coli isolates with a detected pmrB V161G mutation when assembled with Velvet, but not when using SPAdes or when mapping the reads.

Conclusions

PointFinder proved, with high concordance between phenotypic and predicted antimicrobial susceptibility, to be a user-friendly web tool for detection of chromosomal point mutations associated with antimicrobial resistance.

General information

State: Published
Organisations: Department of Systems Biology, Center for Biological Sequence Analysis, National Food Institute, Research Group for Genomic Epidemiology, Department of Bio and Health Informatics, Genomic Epidemiology, Statens Serum Institut
Number of pages: 5
Pages: 2764-2768
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: Journal of Antimicrobial Chemotherapy
Volume: 72
Issue number: 10
ISSN (Print): 0305-7453
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4.34 SJR 2.419 SNIP 1.568
Web of Science (2017): Impact factor 5.217
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.21 SJR 2.283 SNIP 1.521
Web of Science (2016): Impact factor 5.071
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 4.06 SJR 2.259 SNIP 1.516
Web of Science (2015): Impact factor 4.919
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 4.61 SJR 2.298 SNIP 1.765
Web of Science (2014): Impact factor 5.313
Web of Science (2014): Indexed yes
<table>
<thead>
<tr>
<th>Year</th>
<th>BFI Level</th>
<th>Scopus Rating</th>
<th>Web of Science</th>
<th>ISI Indexed</th>
<th>Web of Science Indexed</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>1</td>
<td>4.7 SJR 2.479 SNIP 1.824</td>
<td>5.439</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2012</td>
<td>1</td>
<td>4.35 SJR 2.283 SNIP 1.718</td>
<td>5.338</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2011</td>
<td>1</td>
<td>4.24 SJR 2.341 SNIP 1.769</td>
<td>5.068</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2010</td>
<td>1</td>
<td>SJR 2.161 SNIP 1.643</td>
<td>4.659</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2009</td>
<td>1</td>
<td>SJR 1.902 SNIP 1.615</td>
<td>5.068</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2008</td>
<td>1</td>
<td>SJR 2.076 SNIP 1.506</td>
<td>5.068</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2007</td>
<td>1</td>
<td>SJR 1.744 SNIP 1.509</td>
<td>5.068</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>SJR 1.771 SNIP 1.437</td>
<td>5.068</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2005</td>
<td>1</td>
<td>SJR 1.768 SNIP 1.5</td>
<td>5.068</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2004</td>
<td>1</td>
<td>SJR 1.435 SNIP 1.465</td>
<td>5.068</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2003</td>
<td>1</td>
<td>SJR 1.367 SNIP 1.338</td>
<td>5.068</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2002</td>
<td>1</td>
<td>SJR 1.4 SNIP 1.284</td>
<td>5.068</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
<td>SJR 1.388 SNIP 1.232</td>
<td>5.068</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>2000</td>
<td>1</td>
<td>SJR 1.113 SNIP 1.248</td>
<td>5.068</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>1999</td>
<td>1</td>
<td>SJR 1.111 SNIP 1.388</td>
<td>5.068</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>