Plasmonic nanopillar structures for surface-enhanced raman scattering applications

Noble metal nanostructures support localized surface plasmon (LSPR) resonances that depend on their dimensions, shapes and compositions. Particle LSPR's can be used to spatially confine the incident light and produce enormous electromagnetic (EM) field enhancement spots, i.e. hot spots. Hot spots have been utilized in surfaceenhanced Raman spectroscopy (SERS) for biological and chemical sensing. We present Au nanopillar (NP) SERS structures that are excellent for molecular detection. The NP structures can be fabricated using a simple two-step process. We analyze NP optical properties experimentally and theoretically. Simulations show that that a single Agcoated NP supports two LSPR modes, i.e. the particle mode and the Ag cap resonant cavity mode. The Ag cap resonant cavity mode contributes most to the enhancement of the Raman scattering signal. The electric field distribution calculations show that the EM hot spots are located at the bottom of the Ag cap which is important observation for practical SERS sensing. Reproducible and repeatable SERS signal intensities can be obtained across large surface areas (>mm²). Application examples include detection of TAMRA-labeled vasopressin and cyanide (KCN).