Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide - DTU Orbit (18/12/2018)

Plasmonic modulator based on gain-assisted metal-semiconductor-metal waveguide

We investigate plasmonic modulators with a gain material to be implemented as ultra-compact and ultra-fast active nanodevices in photonic integrated circuits. We analyze metal-semiconductor-metal (MSM) waveguides with InGaAsP-based active material layers as ultra-compact plasmonic modulators. The modulation is achieved by changing the gain of the core that results in different transmittance through the waveguides. A MSM waveguide enables high field localization and therefore high modulation speed. Bulk semiconductor, quantum wells and quantum dots, arranged in either horizontal or vertical layout, are considered as the core of the MSM waveguide. Dependences on the waveguide core size and gain values of various active materials are studied. The designs consider also practical aspects like n- and p-doped layers and barriers in order to obtain results as close to reality. The effective propagation constants in the MSM waveguides are calculated numerically. Their changes in the switching process are considered as a figure of merit. We show that a MSM waveguide with electrical current control of the gain incorporates compactness and deep modulation along with a reasonable level of transmittance.

General information

State: Published
Organisations: Department of Photonics Engineering, Plasmonics and Metamaterials, Nanophotonic Devices
Contributors: Babicheva, V. E., Kulkova, I. V., Malureanu, R., Yvind, K., Lavrinenko, A. V.
Pages: 389-399
Publication date: 2012
Peer-reviewed: Yes

Publication information

Journal: Photonics and Nanostructures - Fundamentals and Applications
Volume: 10
Issue number: 4
ISSN (Print): 1569-4410
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.63 SJR 0.433 SNIP 0.762
Web of Science (2017): Impact factor 1.575
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.8 SJR 0.535 SNIP 0.823
Web of Science (2016): Impact factor 1.705
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.56 SJR 0.728 SNIP 0.668
Web of Science (2015): Impact factor 1.505
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.54 SJR 0.739 SNIP 0.772
Web of Science (2014): Impact factor 1.474
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.67 SJR 0.85 SNIP 0.743
Web of Science (2013): Impact factor 1.35
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.73 SJR 0.962 SNIP 1.094
Web of Science (2012): Impact factor 1.792
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.29 SJR 1.328 SNIP 1.183