Plasma amino acid levels are elevated in young, healthy low birth weight men exposed to short-term high-fat overfeeding.

Low birth weight (LBW) individuals exhibit a disproportionately increased, incomplete fatty acid oxidation and a decreased glucose oxidation, compared with normal birth weight (NBW) individuals, and furthermore have an increased risk of developing insulin resistance and type 2 diabetes. We hypothesized that changes in amino acid metabolism may occur parallel to alterations in fatty acid and glucose oxidation, and could contribute to insulin resistance. Therefore, we measured fasting plasma levels of 15 individual or pools of amino acids in 18 LBW and 25 NBW men after an isocaloric control diet and after a 5-day high-fat, high-calorie diet. We demonstrated that LBW and NBW men increased plasma alanine levels and decreased valine and leucine/isoleucine levels in response to overfeeding. Also, LBW men had higher alanine, proline, methionine, citrulline, and total amino acid levels after overfeeding compared with NBW men. Alanine and total amino acid levels tended to be negatively associated with the insulin-stimulated glucose uptake after overfeeding. Therefore, the higher amino acid levels in LBW men could be a consequence of their reduction in skeletal muscle insulin sensitivity due to overfeeding with a possible increased skeletal muscle proteolysis and/or could potentially contribute to an impaired insulin sensitivity. Furthermore, the alanine level was negatively associated with the plasma acetylcarnitine level and positively associated with the hepatic glucose production after overfeeding. Thus, the higher alanine level in LBW men could be accompanied by an increased anaplerotic formation of oxaloacetate and thereby an enhanced tricarboxylic acid cycle activity and as well an increased gluconeogenesis.

General information
State: Published
Organisations: Department of Systems Biology, Systems Metabolic Lipidology, Copenhagen University Hospital, Duke University
Number of pages: 13
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Physiological Reports
Volume: 4
Issue number: 23
Article number: e13044
ISSN (Print): 2051-817X
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.99 SJR 0.948 SNIP 0.688
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.69 SJR 0.976 SNIP 0.663
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): SJR 0.826 SNIP 0.648
BFI (2014): BFI-level 1
Scopus rating (2014): SJR 0.474 SNIP 0.415
BFI (2013): BFI-level 1
ISI indexed (2013): ISI indexed no
Original language: English
Keywords: Amino acids, High-fat overfeeding, Insulin resistance, Low birth weight, Type 2 diabetes
Electronic versions:
Plasma_amino_acid_levels.pdf
DOIs:
10.14814/phy2.13044
Source: PublicationPreSubmission
Source-ID: 127682646
Research output: Research - peer-review | Journal article – Annual report year: 2016