PI controller design of a wind turbine: evaluation of the pole-placement method and tuning using constrained optimization - DTU Orbit (10/12/2018)

PI controller design of a wind turbine: evaluation of the pole-placement method and tuning using constrained optimization

PI/PID controllers are the most common wind turbine controllers. Normally a first tuning is obtained using methods such as pole-placement or Ziegler-Nichols and then extensive aeroelastic simulations are used to obtain the best tuning in terms of regulation of the outputs and reduction of the loads. In the traditional tuning approaches, the properties of different open loop and closed loop transfer functions of the system are not normally considered. In this paper, an assessment of the pole-placement tuning method is presented based on robustness measures. Then a constrained optimization setup is suggested to automatically tune the wind turbine controller subject to robustness constraints. The properties of the system such as the maximum sensitivity and complementary sensitivity functions (Ms and Mt), along with some of the responses of the system, are used to investigate the controller performance and formulate the optimization problem. The cost function is the integral absolute error (IAE) of the rotational speed from a disturbance modeled as a step in wind speed. Linearized model of the DTU 10-MW reference wind turbine is obtained using HAWCStab2. Thereafter, the model is reduced with model order reduction. The trade-off curves are given to assess the tunings of the poles-placement method and a constrained optimization problem is solved to find the best tuning.

General information
State: Published
Organisations: Department of Wind Energy, Wind turbine loads & control
Contributors: Mirzaei, M., Tibaldi, C., Hansen, M. H.
Number of pages: 7
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Journal of Physics: Conference Series (Online)
Volume: 753
Article number: 052026
ISSN (Print): 1742-6596
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.48 SJR 0.241 SNIP 0.447
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.45 SJR 0.24 SNIP 0.401
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.35 SJR 0.252 SNIP 0.374
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.32 SJR 0.264 SNIP 0.352
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.25 SJR 0.245 SNIP 0.293
ISI indexed (2013): ISI indexed no
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.33 SJR 0.293 SNIP 0.387
ISI indexed (2012): ISI indexed no
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.43 SJR 0.293 SNIP 0.356
ISI indexed (2011): ISI indexed no
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.288 SNIP 0.351
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.259 SNIP 0.346
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.264 SNIP 0.301
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.258 SNIP 0.399
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.272 SNIP 0.311
Web of Science (2006): Indexed yes
Original language: English
Keywords: Wind power plants, Optimisation techniques, Control of electric power systems, Control system analysis and synthesis methods, Stability in control theory, Power and plant engineering (mechanical engineering), Optimisation, Control technology and theory, Elasticity (mechanical engineering), control system synthesis, elasticity, optimisation, PI control, pole assignment, reduced order systems, robust control, wind power plants, wind turbines, wind turbine PI controller design, constrained optimization, PID controller, aeroelastic simulation, load reduction, pole-placement tuning method assessment, robustness constraint, sensitivity function, integral absolute error, IAE, cost function, wind speed, DTU reference wind turbine, HAWCStab2, model order reduction
Electronic versions:
PI_controller_design.pdf
DOIs:
10.1088/1742-6596/753/5/052026
Source: Findit
Source-ID: 2346242894
Research output: Research - peer-review › Conference article – Annual report year: 2016