Phytotoxicity of polycyclic aromatic hydrocarbons to willow trees

Publication: Research - peer-reviewJournal article – Annual report year: 2002

View graph of relations

The toxicity of PAH to willow trees (Salix alba, S. viminalis, S. viminalisx;schwerinii) was investigated. Willow cuttings were grown in PAH-saturated hydroponic solution (naphthalene NAP, phenanthrene PHEN and benzo(a)pyrene BaP). Toxicity was related to aqueous solubility and was highest for NAP. PHEN did not show significant effects, except in one case. Exposure of trees to BaP showed no effect in two cases, but increased transpiration and growth in two others. High dosages of NAP were fatal for the trees, the lowest dosage significantly stimulated growth. Soil samples were taken from several PAH contaminated sites, among them gas works sites and a former sludge basin. The PAH contents ranged from 1.76 mg/kg to 1451 mg/kg. None of the soils was lethally toxic to the trees, and difference between growth in control soils and growth in PAH contaminated soils was not apparent. Growth and water use efficiency were positively, but not significantly correlated to the PAH content of the soils. Outdoor growth of willows and poplars on the former sludge basin in Valby was monitored, with willows growing faster than poplars (Populus trichocarpa). Phytotoxic effects could be observed at some willows at the Valby sludge basin, but it is not sure whether these effects can be contributed to PAH.
Original languageEnglish
JournalJournal of Soils and Sediments
Publication date2002
Volume2
Issue2
Pages77-82
ISSN1439-0108
DOIs
StatePublished
CitationsWeb of Science® Times Cited: No match on DOI

Keywords

  • phenanthrene, naphthalene, plants, PAH, willow, phytoremediation, benzo(a)pyrene, salix
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 6468859