Phytases for improved iron absorption

Phytases for improved iron absorption

Phytase enzymes present an alternative to iron supplements, because they have been shown to improve iron absorption by means of catalysing the degradation of a potent iron absorption inhibitor: phytic acid. Phytic acid is a hexaphosphate of inositol and is particularly prevalent in cereal grains, where it serves as a storage molecule for phosphorous. Phytic acid is also associated with minerals. The minerals are bound by chelation to the negatively charged phosphate groups in phytic acid. Phytases catalyse the dephosphorylation of phytic acid, thus releasing bound minerals to make them available for absorption. This article presents research on phytase catalysis in gastric conditions and considers potential benefits and drawbacks for using phytases as a food supplement.

General information
State: Published
Organisations: Department of Chemical and Biochemical Engineering, Center for BioProcess Engineering
Contributors: Nielsen, A. V. F., Meyer, A. S.
Pages: 48-51
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Agro Food Industry Hi-Tech
Volume: 27
Issue number: 1
ISSN (Print): 1722-6996
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.29 SJR 0.159 SNIP 0.174
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.33 SJR 0.203 SNIP 0.151
Web of Science (2016): Impact factor 0.299
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.24 SJR 0.167 SNIP 0.208
Web of Science (2015): Impact factor 0.202
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.22 SJR 0.157 SNIP 0.162
Web of Science (2014): Impact factor 0.205
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.28 SJR 0.177 SNIP 0.103
Web of Science (2013): Impact factor 0.294
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.19 SJR 0.158 SNIP 0.094
Web of Science (2012): Impact factor 0.234
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.21 SJR 0.167 SNIP 0.138
Web of Science (2011): Impact factor 0.225
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.147 SNIP 0.092
Web of Science (2010): Impact factor 0.238