Physico-chemical Properties of Marine Phospholipid Emulsions

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

Many studies have shown that marine phospholipids (PL) have better bioavailability, better resistance towards oxidation and contain higher polyunsaturated fatty acids such as eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) than triglycerides (TAG) present in fish oil. The objective of this study was to investigate the emulsifying properties of various commercial marine PL and the feasibility of using them to prepare stable emulsions prepared with or without addition of fish oil. In addition, this study also investigated the relationship between chemical composition of marine PL and the stability of their emulsions. Physical stability was investigated through particle size distribution (PSD), zeta potential, microscopy inspection and emulsion separation (ES); while the oxidative and hydrolytic stability of emulsions were investigated through peroxide value (PV) and free fatty acids value (FFA) after 32 days storage at room temperature and at 2 °C. In conclusion, marine PL showed good emulsifying properties and it was possible to prepare marine PL emulsions with and without addition of fish oil. Emulsion with both good oxidative stability and physical stability could be prepared by using marine PL of high purity, less TAG, more PL, cholesterol and higher antioxidant content.
Original languageEnglish
JournalJ A O C S
Publication date2012
Volume89
Journal number11
Pages2011-2024
ISSN0003-021X
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 6

Keywords

  • Physicochemical properties, Fish oil, Emulsion stability, Oxidative stability, Particle size distribution
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 12618392