Physico-chemical characterisation of material fractions in residual and source-segregated household waste in Denmark - DTU Orbit (14/04/2019)

Physico-chemical characterisation of material fractions in residual and source-segregated household waste in Denmark

Physico-chemical waste composition data are paramount for the assessment and planning of waste management systems. However, the applicability of data is limited by the regional, temporal and technical scope of waste characterisation studies. As Danish and European legislation aims for higher recycling rates evaluation of source-segregation and recycling chains gain importance. This paper provides a consistent up-to-date dataset for 74 physico-chemical parameters in 49 material fractions from residual and 24 material fractions from source-segregated Danish household waste. Significant differences in the physico-chemical properties of residual and source-segregated waste fractions were found for many parameters related to organic matter, but also for elements of environmental concern. Considerable differences in potentially toxic metal concentrations between the individual recyclable fractions within one material type were observed. This indicates that careful planning and performance evaluation of recycling schemes are important to ensure a high quality of collected recyclables. Rare earth elements (REE) were quantified in all waste fractions analysed, with the highest concentrations of REE found in fractions with high content of mineral raw materials, soil materials and dust. The observed REE concentrations represent the background concentration level in non-hazardous waste materials that may serve as a reference point for future investigations related to hazardous waste management. The detailed dataset provided here can be used for assessments of waste management solutions in Denmark and for the evaluation of the quality of recyclable materials in waste.

General information
Publication status: Published
Organisations: Department of Environmental Engineering, Residual Resource Engineering
Contributors: Götze, R., Pivnenko, K., Boldrin, A., Scheutz, C., Astrup, T. F.
Number of pages: 14
Pages: 13-26
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: Waste Management
Volume: 54
ISSN (Print): 0956-053X
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 4 SJR 1.407 SNIP 2.159
Web of Science (2016): Impact factor 4.03
Web of Science (2016): Indexed yes
Original language: English
Keywords: Waste Management and Disposal, Chemical composition, Municipal solid waste (MSW), Rare earth elements (REE), Recycling, Characterization, Geochemistry, Hazardous materials, Hazards, Information management, Quality control, Rare earth elements, Rare earths, Waste management, Background concentration, Chemical compositions, Hazardous waste management, Physico-chemical parameters, Physicochemical property, Potentially toxic metals, Waste management systems, Municipal solid waste
Electronic versions:
DOIs: 10.1016/j.wasman.2016.05.009
Source: FindIt
Source-ID: 2304574936
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review