Phthalate metabolites in urine and asthma, allergic rhinoconjunctivitis and atopic dermatitis in preschool children - DTU Orbit (19/01/2019)

Phthalate metabolites in urine and asthma, allergic rhinoconjunctivitis and atopic dermatitis in preschool children

Phthalate esters are among the most ubiquitous of indoor pollutants and have been associated with various adverse health effects. In the present study we assessed the cross-sectional association between eight different phthalate metabolites in urine and allergic disease in young children. As part of the Danish Indoor Environment and Children's Health study, urine samples were collected from 440 children aged 3-5 years, of whom 222 were healthy controls, 68 were clinically diagnosed with asthma, 76 with rhinoconjunctivitis and 81 with atopic dermatitis (disease subgroups are not mutually exclusive; some children had more than one disease). There were no statistically significant differences in the urine concentrations of phthalate metabolites between cases and healthy controls with the exception of MnBP and MECCPP, which were higher in healthy controls compared with the asthma case group. In the crude analysis MnBP and MiBP were negatively associated with asthma. In the analysis adjusted for multiple factors, only a weak positive association between MEP in urine and atopic dermatitis was found; there were no positive associations between any phthalate metabolites in urine and either asthma or rhinoconjunctivitis. These findings appear to contradict earlier studies. Differences may be due to higher exposures to certain phthalates (e.g., BBzP) via non-dietary pathways in earlier studies, phthalates serving as surrogates for an agent associated with asthma (e.g., PVC flooring) in previous studies but not the present study or altered cleaning habits and the use of "allergy friendly" products by parents of children with allergic disease in the current study in contrast to studies conducted earlier.

General information
State: Published
Organisations: Department of Civil Engineering, Section for Indoor Environment, Odense University Hospital, Swedish Environmental Research Institute, SP Technical Research Institute of Sweden, Aarhus University, University of Southern Denmark
Pages: 645-652
Publication date: 2014
Peer-reviewed: Yes

Publication information
Journal: International Journal of Hygiene and Environmental Health
Volume: 217
Issue number: 6
ISSN (Print): 1438-4639
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 4 SJR 1.334 SNIP 1.262
Web of Science (2017): Impact factor 4.848
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 4.22 SJR 1.437 SNIP 1.482
Web of Science (2016): Impact factor 4.643
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 3.84 SJR 1.452 SNIP 1.278
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 3.61 SJR 1.32 SNIP 1.652
Web of Science (2014): Impact factor 3.829
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 3.3 SJR 1.175 SNIP 1.417
Web of Science (2013): Impact factor 3.276
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes