Photon-pair sources based on intermodal four-wave mixing in few-mode fibers

Four-wave mixing in optical fibers has been proven to have many applications within processing of classical optical signals. In addition, recent developments in multimode fibers have made it possible to achieve the necessary phase-matching for efficient four-wave mixing over a very wide bandwidth. Thus, the combination of multimode fiber optics and four-wave mixing is very attractive for various applications. This is especially the case for applications in quantum communication, for example in photon-pair generation. This is the subject of this work, where we discuss the impact of fluctuations in core radius on the quality of the heralded single-photon states and demonstrate experimental results of intermodal spontaneous four-wave mixing for photon-pair generation.

General information
State: Published
Organisations: Department of Photonics Engineering, Fiber Optics, Devices and Non-linear Effects, Centre of Excellence for Silicon Photonics for Optical Communications
Contributors: Rottwitt, K., Koefoed, J. G., Christensen, E. N.
Publication date: 1 Jun 2018
Peer-reviewed: Yes

Publication information
Journal: Fibers
Volume: 6
Issue number: 2
Article number: 32
ISSN (Print): 1229-9197
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.52 SJR 0.471 SNIP 0.863
Web of Science (2017): Impact factor 1.353
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.23 SJR 0.414 SNIP 0.639
Web of Science (2016): Impact factor 1.113
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.19 SJR 0.441 SNIP 0.744
Web of Science (2015): Impact factor 1.022
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.08 SJR 0.454 SNIP 0.792
Web of Science (2014): Impact factor 0.881
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.26 SJR 0.59 SNIP 1.044
Web of Science (2013): Impact factor 1.113
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.12 SJR 0.551 SNIP 0.967
Web of Science (2012): Impact factor 0.912
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.09 SJR 0.54 SNIP 1.015
Web of Science (2011): Impact factor 0.836
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.477 SNIP 0.807
Web of Science (2010): Impact factor 0.84
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.303 SNIP 0.417
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.331 SNIP 0.529
Scopus rating (2007): SJR 0.381 SNIP 0.786
Scopus rating (2006): SJR 0.412 SNIP 0.762
Scopus rating (2005): SJR 0.399 SNIP 0.721
Scopus rating (2004): SJR 0.308 SNIP 0.579
Scopus rating (2003): SJR 0.256 SNIP 0.432
Scopus rating (2002): SJR 0.268 SNIP 0.411
Scopus rating (2001): SJR 0.105 SNIP 0.075
Original language: English
Keywords: Four-wavemixing, Nonlinear fiber optics, Photon-pair generation, Quantumcommunication
Electronic versions:
fibers_06_00032_1_.pdf
DOIs:
10.3390/fib6020032
Source: Scopus
Source-ID: 85050252310
Research output: Research - peer-review ; Journal article – Annual report year: 2018