Photonics-assisted wireless link based on mm-wave reconfigurable antennas

Photonics-assisted wireless link based on mm-wave reconfigurable antennas

The authors report a novel concept for photonics-assisted and broadband optical-wireless indoor networks based on optically-controlled reconfigurable antenna arrays (OCRAAs) and photonic down conversion (PDC) techniques, operating in the 28 and 38 GHz frequency bands. The antenna bandwidth is optically reconfigured by using photoconductive switches. In this way, the optical backhaul can either be used for high data rate transmission and remotely controlling the antenna operation. Experimental results on 40 Mbaud with complex modulation formats up to 64-QAM wireless transmission supported by PDC are successfully reported under 78 dB link budget requirement. Two OCRAAs have been simultaneously tested in an indoor environment at 1.25 Gb/s wireless data signal transmission. The proposed antenna design significantly increases the degrees of freedom, opening new possibilities in the development of antennas for access networks in the mm-wave frequency range.

General information
State: Published
Organisations: Department of Photonics Engineering, Metro-Access and Short Range Systems, Networks Technology and Service Platforms, Electromagnetic Systems, National Institute of Telecommunications, Universidade Federal de Itajuba
Pages: 2071-2076
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: I E T Microwaves Antennas & Propagation
Volume: 11
Issue number: 14
ISSN (Print): 1751-8725
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.14 SJR 0.565 SNIP 1.226
Web of Science (2017): Impact factor 1.739
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.83 SJR 0.503 SNIP 0.959
Web of Science (2016): Impact factor 1.187
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.53 SJR 0.614 SNIP 1.097
Web of Science (2015): Impact factor 0.817
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.65 SJR 0.759 SNIP 1.177
Web of Science (2014): Impact factor 0.91
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.58 SJR 0.565 SNIP 1.052
Web of Science (2013): Impact factor 0.969
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.51 SJR 0.496 SNIP 0.972
Web of Science (2012): Impact factor 0.836
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.27 SJR 0.477 SNIP 0.966