Photonic-Chip-Enabled 25 Tb/s Optical Superchannel using Cyclic Spectra

We demonstrate the all-optical generation of a 3.8-THz wide superchannel, using a photonic-chip-based filter for sub-channel definition. The photonic chip is able to shape and aggregate 304× NRZ-32-QAM sub-channels, carrying 10-Gbd data, with an effective data-rate of 24.79 Tb/s.

General information
State: Published
Organisations: Department of Photonics Engineering, High-Speed Optical Communication, Centre of Excellence for Silicon Photonics for Optical Communications, Monash University
Contributors: Corcoran, B., Geng, Z., Rozental, V., Zhuang, L., Lillieholm, M., Lowery, A. J.
Number of pages: 3
Pages: 3 pp.
Publication date: 2017

Host publication information
Title of host publication: Proceedings of 2017 European Conference on Optical Communication (ECOC)
Publisher: IEEE
ISBN (Print): 978-1-5386-5624-2/17
(2017 European Conference on Optical Communication (ecoc)).
DOIs: 10.1109/ECOC.2017.8345852
Source: FindIt
Source-ID: 2432499016
Research output: Research - peer-review › Article in proceedings – Annual report year: 2018