Photometry and models of selected main belt asteroids: IX. Introducing interactive service for asteroid models (ISAM)

Publication: Research - peer-reviewJournal article – Annual report year: 2012

  • Author: Marciniak, A.

  • Author: Bartczak, P.

  • Author: Santana-Ros, T.

  • Author: Michałowski, T.

  • Author: Borczyk, W.

  • Author: Fagas, M.

  • Author: Hirsch, R.

  • Author: Kamiński, K.

  • Author: Kryszczyńska, A.

  • Author: Kwiatkowski, T.

  • Author: Polińska, M.

  • Author: Sobkowiak, K.

  • Author: Stasik, M.

  • Author: Antonini, P.

  • Author: Behrend, R.

  • Author: Bembrick, C.

  • Author: Bernasconi, L.

  • Author: Colas, F.

  • Author: Coloma, J.

  • Author: Crippa, R.

  • Author: Manzini, F.

  • Author: Esseiva, N.

  • Author: Santacana, G.

  • Author: Wucher, H.

  • Author: Fauvaud, M.

  • Author: Fauvaud, S.

  • Author: Ferreira, Desiree Della Monica

    Astrophysics, National Space Institute, Technical University of Denmark, Elektrovej, 2800, Kgs. Lyngby, Denmark

  • Author: Hein Bertelsen, R.P.

  • Author: Higgins, D.

  • Author: Kajava, J.J.E.

  • Author: Michałowski, J.

  • Author: Michałowski, M.J.

  • Author: Paschke, A.

  • Author: Poncy, R.

  • Author: Roy, R.

  • Author: Starczewski, S.

  • Author: Velichko, F.

  • Author: Zafar, T.

View graph of relations

Context. The shapes and spin states of asteroids observed with photometric techniques can be reconstructed using the lightcurve inversion method. The resultant models can then be confirmed or exploited further by other techniques, such as adaptive optics, radar, thermal infrared, stellar occultations, or space probe imaging. Aims. During our ongoing work to increase the set of asteroids with known spin and shape parameters, there appeared a need for displaying the model plane-of-sky orientations for specific epochs to compare models from different techniques. It would also be instructive to be able to track how the complex lightcurves are produced by various asteroid shapes. Methods. Basing our analysis on an extensive photometric observational dataset, we obtained eight asteroid models with the convex lightcurve inversion method. To enable comparison of the photometric models with those from other observing/modelling techniques, we created an on-line service where we allow the inversion models to be orientated interactively. Results. Our sample of objects is quite representative, containing both relatively fast and slow rotators with highly and lowly inclined spin axes. With this work, we increase the sample of asteroid spin and shape models based on disk-integrated photometry to over 200. Three of the shape models obtained here are confirmed by the stellar occultation data; this also allowed independent determinations of their sizes to be made. Conclusions. The ISAM service can be widely exploited for past and future asteroid observations with various, complementary techniques and for asteroid dimension determination. © 2012 ESO.
Original languageEnglish
Article numberA131
JournalAstronomy & Astrophysics
Publication date2012
Volume545
Number of pages31
ISSN0004-6361
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 1

Keywords

  • Photometry, Radar imaging, Stars, Asteroids
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 12335930