Phosphoric acid doped membranes based on Nafion®, PBI and their blends – Membrane preparation, characterization and steam electrolysis testing - DTU Orbit (13/12/2018)

Phosphoric acid doped membranes based on Nafion®, PBI and their blends – Membrane preparation, characterization and steam electrolysis testing

Proton exchange membrane steam electrolysis at temperatures above 100 °C has several advantages from thermodynamic, kinetic and engineering points of view. A key material for this technology is the high temperature proton exchange membrane. In this work a novel procedure for preparation of Nafion® and polybenzimidazole blend membranes was developed. Homogeneous binary membranes covering the whole composition range were prepared and characterized with respect to chemical and physiochemical properties such as water uptake, phosphoric acid doping, oxidative stability, mechanical strength and proton conductivity. An MEA based on phosphoric acid doped Nafion® was operated at 130 °C at ambient pressure with a current density of 300 mA cm−2 at 1.75 V, with no membrane degradation observed during a test of 90 h. The PBI based MEAs showed better polarization curves (500 mA cm−2 at 1.75 V) but poor durability.

General information
State: Published
Organisations: Energy and Materials, Department of Chemistry
Contributors: Aili, D., Hansen, M. K., Pan, C., Li, Q., Christensen, E., Jensen, J. O., Bjerrum, N.
Pages: 6985-6993
Publication date: 2011
Peer-reviewed: Yes

Publication information
Volume: 36
Issue number: 12
ISSN (Print): 0360-3199
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 4.1 SJR 1.116 SNIP 1.267
Web of Science (2017): Impact factor 4.229
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.74 SJR 1.145 SNIP 1.315
Web of Science (2016): Impact factor 3.582
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.46 SJR 1.27 SNIP 1.314
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 3.54 SJR 1.207 SNIP 1.484
Web of Science (2014): Impact factor 3.313
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 3.38 SJR 1.265 SNIP 1.449
Web of Science (2013): Impact factor 2.93
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.96 SJR 1.499 SNIP 1.708
Web of Science (2012): Impact factor 3.548
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 4.42 SJR 1.443 SNIP 1.828
Web of Science (2011): Impact factor 4.054
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 1.579 SNIP 1.854
Web of Science (2010): Impact factor 4.057
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 1.32 SNIP 1.87
Web of Science (2009): Indexed yes
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 1.389 SNIP 2.073
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.286 SNIP 2.197
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 1.061 SNIP 2.202
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 1.116 SNIP 1.825
Scopus rating (2004): SJR 1.232 SNIP 1.626
Web of Science (2004): Indexed yes
Scopus rating (2003): SJR 0.996 SNIP 1.289
Scopus rating (2002): SJR 0.748 SNIP 1.156
Scopus rating (2001): SJR 0.488 SNIP 1.197
Scopus rating (2000): SJR 0.384 SNIP 0.83
Scopus rating (1999): SJR 0.376 SNIP 0.882
Original language: English
Keywords: Steam electrolysis, Nafion®, Phosphoric acid, Polybenzimidazole, Proton exchange membranes
DOIs: 10.1016/j.ijhydene.2011.03.058
Source: orbit
Source-ID: 278198
Research output: Research - peer-review > Journal article – Annual report year: 2011