Phenomena based Methodology for Process Synthesis incorporating Process Intensification - DTU Orbit (10/01/2019)

Phenomena based Methodology for Process Synthesis incorporating Process Intensification

Process intensification (PI) has the potential to improve existing as well as conceptual processes, in order to achieve a more sustainable production. PI can be achieved at different levels. That is, the unit operations, functional and/or phenomena level. The highest impact is expected by looking at processes at the lowest level of aggregation which is the phenomena level. In this paper, a phenomena based synthesis/design methodology incorporating process intensification is presented. Using this methodology, a systematic identification of necessary and desirable (integrated) phenomena as well as generation and screening of phenomena based flowsheet options are presented using a decomposition based solution approach. The developed methodology as well as necessary tools and supporting methods are highlighted through a case study involving the production of isopropyl-acetate.

General information

State: Published
Organisations: Center for Process Engineering and Technology, Department of Chemical and Biochemical Engineering, Computer Aided Process Engineering Center
Contributors: Lutze, P., Babi, D. K., Woodley, J., Gani, R.
Pages: 7127-7144
Publication date: 2013
Peer-reviewed: Yes

Publication information

Journal: Industrial & Engineering Chemistry Research
Volume: 52
Issue number: 22
ISSN (Print): 0888-5885
Ratings:
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.4 SJR 0.978 SNIP 1.203
Web of Science (2017): Impact factor 3.141
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.1 SJR 0.95 SNIP 1.155
Web of Science (2016): Impact factor 2.843
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.87 SJR 0.938 SNIP 1.145
Web of Science (2015): Impact factor 2.567
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.85 SJR 1.009 SNIP 1.287
Web of Science (2014): Impact factor 2.587
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.6 SJR 0.975 SNIP 1.232
Web of Science (2013): Impact factor 2.235
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.56 SJR 1.054 SNIP 1.32
Web of Science (2012): Impact factor 2.206
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 2.58 SJR 1.076 SNIP 1.236