Pervious concrete fill in Pearl-Chain Bridges: Using small-scale results in full-scale implementation - DTU Orbit (11/03/2019)

Pervious concrete fill in Pearl-Chain Bridges: Using small-scale results in full-scale implementation

Pearl-Chain Bridge technology is a new prefabricated arch solution for highway bridges. This study investigates the feasibility of pervious concrete as a filling material in Pearl-Chain Bridges. The study is divided into two steps: (1) small-scale tests where the variation in vertical void distribution and strength properties is determined for 800 mm high blocks cast in different numbers of layers, and (2) full-scale implementation in a 26 m long Pearl-Chain Bridge. With a layer thickness of 27 cm, the small-scale tests indicated homogenous results; however, for the full-scale implementation, the same degree of homogeneity was not shown. (C) 2015 Elsevier Ltd. All rights reserved.

General Information

State: Published
Organisations: Department of Civil Engineering, Section for Building Design, Technical University of Denmark
Contributors: Lund, M. S. M., Hansen, K. K., Truelsen, R., Johansen, L.
Number of pages: 11
Pages: 404-414
Publication date: 2016
Peer-reviewed: Yes

Publication Information

Journal: Construction and Building Materials
Volume: 106
ISSN (Print): 0950-0618
Ratings:
- BFI (2019): BFI-level 2
- Web of Science (2019): Indexed yes
- BFI (2018): BFI-level 2
- Web of Science (2018): Indexed yes
- BFI (2017): BFI-level 2
- Scopus rating (2017): CiteScore 4.22 SJR 1.607 SNIP 2.309
- Web of Science (2017): Impact factor 3.485
- Web of Science (2017): Indexed yes
- BFI (2016): BFI-level 2
- Scopus rating (2016): CiteScore 3.77 SJR 1.511 SNIP 2.37
- Web of Science (2016): Impact factor 3.169
- Web of Science (2016): Indexed yes
- BFI (2015): BFI-level 1
- Scopus rating (2015): CiteScore 3.24 SJR 1.503 SNIP 2.237
- Web of Science (2015): Impact factor 2.421
- Web of Science (2015): Indexed yes
- BFI (2014): BFI-level 1
- Scopus rating (2014): CiteScore 2.98 SJR 1.539 SNIP 2.55
- Web of Science (2014): Impact factor 2.296
- Web of Science (2014): Indexed yes
- BFI (2013): BFI-level 1
- Scopus rating (2013): CiteScore 3.07 SJR 1.837 SNIP 2.957
- Web of Science (2013): Impact factor 2.265
- ISI indexed (2013): ISI indexed yes
- Web of Science (2013): Indexed yes
- BFI (2012): BFI-level 1
- Scopus rating (2012): CiteScore 3.12 SJR 1.656 SNIP 3.3
- Web of Science (2012): Impact factor 2.293
- ISI indexed (2012): ISI indexed yes
- Web of Science (2012): Indexed yes
- BFI (2011): BFI-level 1
- Scopus rating (2011): CiteScore 2.74 SJR 1.448 SNIP 3.493
- Web of Science (2011): Impact factor 1.834