Persistence of selected ammonium- and phosphonium-based ionic liquids in urban park soil microcosms - DTU Orbit (28/12/2018)

Persistence of selected ammonium- and phosphonium-based ionic liquids in urban park soil microcosms

Knowledge about biodegradability of ionic liquids (ILs) in terrestrial systems is limited. Here, using urban park soil microcosms spiked with either ammonium- or phosphonium-based ILs [didecyldimethylammonium 3-amino-1,2,4-triazolate, benzalkonium 3-amino-1,2,4-triazolate, trihexyl(tetradecyl)phosphonium chloride, or trihexyl(tetradecyl)phosphonium 1,2,4-triazolate], we studied their (i) 300-day primary biodegradation, and (ii) influence on CO2 evolution from the microcosms. The primary biodegradation ranged from 21 to 33% of total compound in the dissolved phase. The evolution of CO2 from spiked microcosms was either lower or within the range of background soil respiration, indicating no or small mineralization of the parent compounds and/or their metabolites, and their negligible or small toxicity to soil microorganisms. Our results suggest the potential for persistence of the four studied ILs in urban park soils. •Primary, 300-day biodegradation ranged from 21 to 33%.•CO2 evolution from the spiked soils was within the range of background respiration.•The studied ILs show potential for long-term persistence in urban park soils.

General information
State: Published
Organisations: Department of Management Engineering, Quantitative Sustainability Assessment, Poznan University Of Life Sciences, Poznan University of Technology, Polish Academy of Sciences
Number of pages: 6
Pages: 91-96
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: International Biodeterioration & Biodegradation
Volume: 103
ISSN (Print): 0964-8305
Ratings:
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 3.75 SJR 1.086 SNIP 1.485
 Web of Science (2017): Impact factor 3.562
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 3.38 SJR 1.032 SNIP 1.567
 Web of Science (2016): Impact factor 2.962
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 1
 Scopus rating (2015): CiteScore 2.71 SJR 0.904 SNIP 1.313
 Web of Science (2015): Impact factor 2.429
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 1
 Scopus rating (2014): CiteScore 2.53 SJR 0.879 SNIP 1.381
 Web of Science (2014): Impact factor 2.131
 Web of Science (2014): Indexed yes
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 2.51 SJR 0.876 SNIP 1.453
 Web of Science (2013): Impact factor 2.235
 ISI indexed (2013): ISI indexed yes
 Web of Science (2013): Indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 2.31 SJR 0.989 SNIP 1.274
 Web of Science (2012): Impact factor 2.059
 ISI indexed (2012): ISI indexed yes
 BFI (2011): BFI-level 1