Periodic orbits near a bifurcating slow manifold

This paper studies a class of $1\frac{1}{2}$-degree-of-freedom Hamiltonian systems with a slowly varying phase that unfolds a Hamiltonian pitchfork bifurcation. The main result of the paper is that there exists an order of $\ln^2\epsilon^{-1}$-many periodic orbits that all stay within an $O(\epsilon^{1/3})$-distance from the union of the normally elliptic slow manifolds that occur as a result of the bifurcation. Here ϵ measures the time scale separation. These periodic orbits are predominantly unstable. The proof is based on averaging of two blowup systems, allowing one to estimate the effect of the singularity, combined with results on asymptotics of the second Painleve equation. The stable orbits of smallest amplitude that are obtained by these methods remain slightly further away from the slow manifold being distant by an order $\mathcal{O}(\epsilon^{1/3}\ln^{1/2}\ln \epsilon^{-1})$.

General information
State: Published
Organisations: Department of Applied Mathematics and Computer Science, Mathematics
Contributors: Kristiansen, K. U.
Pages: 4561–4614
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Journal of Differential Equations
Volume: 259
Issue number: 9
ISSN (Print): 0022-0396
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 1.94 SJR 2.525 SNIP 1.609
Web of Science (2017): Impact factor 1.782
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.98 SJR 2.548 SNIP 1.823
Web of Science (2016): Impact factor 1.988
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 1.95 SJR 2.765 SNIP 1.904
Web of Science (2015): Impact factor 1.821
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 1.78 SJR 2.993 SNIP 1.875
Web of Science (2014): Impact factor 1.68
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 1.76 SJR 2.667 SNIP 1.717
Web of Science (2013): Impact factor 1.57
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 1.64 SJR 2.607 SNIP 1.758
Web of Science (2012): Impact factor 1.48
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 1.31 SJR 2.152 SNIP 1.4
Web of Science (2011): Impact factor 1.277
BFI (2010): BFI-level 2
Scopus rating (2010): SJR 2.329 SNIP 1.561
Web of Science (2010): Impact factor 1.261
BFI (2009): BFI-level 2
Scopus rating (2009): SJR 2.371 SNIP 1.733
BFI (2008): BFI-level 2
Scopus rating (2008): SJR 2.316 SNIP 1.594