Performance and wake conditions of a rotor located in the wake of an obstacle - DTU Orbit

Performance and wake conditions of a rotor located in the wake of an obstacle

Obstacles like forests, ridges and hills can strongly affect the velocity profile in front of a wind turbine rotor. The present work aims at quantifying the influence of nearby located obstacles on the performance and wake characteristics of a downstream located wind turbine. Here the influence of an obstacle in the form of a cylindrical disk was investigated experimentally in a water flume. A model of a three-bladed rotor, designed using Glauert's optimum theory at a tip speed ratio \(\lambda = 5 \), was placed in the wake of a disk with a diameter close to the one of the rotor. The distance from the disk to the rotor was changed from 4 to 8 rotor diameters, with the vertical distance from the rotor axis varied 0.5 and 1 rotor diameters. The associated turbulent intensity of the incoming flow to the rotor changed 3 to 6% due to the influence of the disk wake. In the experiment, thrust characteristics and associated pulsations as a function of the incoming flow structures were measured by strain gauges. The flow condition in front of the rotor was measured with high temporal accuracy using LDA and power coefficients were determine as function of tip speed ratio for different obstacle positions. Furthermore, PIV measurements were carried out to study the development of the mean velocity deficit profiles of the wake behind the wind turbine model under the influence of the wake generated by the obstacle. By use of regression techniques to fit the velocity profiles it was possible to determine velocity deficits and estimate length scales of the wake attenuation.

General information

State: Published
Organisations: Department of Wind Energy, Fluid Mechanics, Russian Academy of Sciences
Contributors: Naumov, I. V., Kabardin, I. K., Mikkelsen, R. F., Okulov, V., Sørensen, J. N.
Number of pages: 7
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Journal of Physics: Conference Series (Online)
Volume: 753
Issue number: 3
Article number: 032051
ISSN (Print): 1742-6596
Ratings:
BFI (2018): BFI-level 1
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 0.48 SJR 0.241 SNIP 0.447
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.45 SJR 0.24 SNIP 0.401
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.35 SJR 0.252 SNIP 0.374
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.32 SJR 0.264 SNIP 0.352
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.25 SJR 0.245 SNIP 0.293
ISI indexed (2013): ISI indexed no
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.33 SJR 0.293 SNIP 0.387
ISI indexed (2012): ISI indexed no
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.43 SJR 0.293 SNIP 0.356
ISI indexed (2011): ISI indexed no
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.288 SNIP 0.351
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1