Partition of iodine (129I and 127I) isotopes in soils and marine sediments

Publication: Research - peer-reviewJournal article – Annual report year: 2011

View graph of relations

Natural organic matter, such as humic and fulvic acids and humin, plays a key role in determining the fate and mobility of radioiodine in soil and sediments. The radioisotope 129I is continuously produced and released from nuclear fuel reprocessing plants, and as a biophilic element, its environmental mobility is strongly linked to organic matter. Due to its long half-life (15.7 million years), 129I builds up in the environment and can be traced since the beginning of the nuclear era in reservoirs such as soils and marine sediments. Nevertheless, partition of the isotope between the different types of organic matter in soil and sediment is rarely explored. Here we present a sequential extraction of 129I and 127I chemical forms encountered in a Danish soil, a soil reference material (IAEA-375), an anoxic marine sediment from Southern Norway and an oxic sediment from the Barents Sea. The different forms of iodine are related to water soluble, exchangeable, carbonates, oxides as well as iodine bound to humic acid, fulvic acid and to humin and minerals. This is the first study to identify 129I in humic and fulvic acid and humin. The results show that 30–56% of the total 127I and 42–60% of the total 129I are associated with organic matter in soil and sediment samples. At a soil/sediment pH below 5.0–5.5, 127I and 129I in the organic fraction associate primarily with the humic acid while at soil/sediment pH > 6 129I was mostly found to be bound to fulvic acid. Anoxic conditions seem to increase the mobility and availability of iodine compared to oxic, while subaerial conditions (soils) reduces the availability of water soluble fraction compared to subaqueous (marine) conditions.
Original languageEnglish
JournalJournal of Environmental Radioactivity
Publication date2011
Volume102
Issue12
Pages1096-1104
ISSN0265-931X
DOIs
StatePublished
CitationsWeb of Science® Times Cited: 5

Keywords

  • Radioecology and tracers
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5808495