Pairs of dual periodic frames

Publication: Research - peer-reviewJournal article – Annual report year: 2012

View graph of relations

The time–frequency analysis of a signal is often performed via a series expansion arising from well-localized building blocks. Typically, the building blocks are based on frames having either Gabor or wavelet structure. In order to calculate the coefficients in the series expansion, a dual frame is needed. The purpose of the present paper is to provide constructions of dual pairs of frames in the setting of the Hilbert space of periodic functions L2(0,2π). The frames constructed are given explicitly as trigonometric polynomials, which allows for an efficient calculation of the coefficients in the series expansions. The generality of the setup covers periodic frames of various types, including nonstationary wavelet systems, Gabor systems and certain hybrids of them.
Original languageEnglish
JournalApplied and Computational Harmonic Analysis
Issue number3
Pages (from-to)315-329
StatePublished - 2012
CitationsWeb of Science® Times Cited: 1


  • Periodic frames, Gabor frames, Wavelet frames, Dual pairs of frames, Trigonometric polynomials
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

Download statistics

No data available

ID: 10205936