PAH in Some Brands of Tea and Coffee

The presence of 25 polycyclic aromatic hydrocarbons (PAHs) in tea and coffee were investigated with focus on four PAHs (PAH4), classified by the European Food Safety Authority (EFSA) as suitable indicators; benz[a]anthracene (BaA), chrysene (CHR), benzo[b]fluoranthene (BbF) and benzo[a]pyrene (BaP). PAH4 from samples of 18 brands of tea leaves and 13 brands of coffee were extracted by pressurized liquid extraction (PLE) followed by highly automated clean up steps for gel permeation chromatography (SX-3) and solid phase extraction (500mg silica). GC-MS were applied for detection of PAH4. The limit of detection (LOD) ranged from 0.1–0.3 μg/kg with recoveries from 94–106% for PAH4. Concentrations of PAH4 followed the pattern of the total sum of 25 PAHs with higher concentrations with a maximum of 115 μg/kg in tea leaves compared to 5.1 μg/kg in coffee. The highest PAH4 levels were found in black tea leaves. An additional 18 samples were used for estimation of transfer from solids to ready-to-drink preparations. Only up to 2% PAH4 were detected in the ready-to-drink tea, while for coffee the PAH4 transfer was up to 14%. The estimated exposure to PAH4 from tea infusions and coffee brew for the average Danish consumption is 29% of the total exposure to PAH4 for Danish consumers.

General information
State: Published
Organisations: National Food Institute, Division of Food Chemistry, Technical University of Denmark, Regional Veterinary and Food Administration Center
Contributors: Duedahl-Olesen, L., Navaratnam, M. A., Jewula, J., Jensen, A. H.
Pages: 74-90
Publication date: 2015
Peer-reviewed: Yes

Publication information
Journal: Polycyclic Aromatic Compounds
Volume: 35
Issue number: 1
ISSN (Print): 1040-6638
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.58 SJR 0.543 SNIP 0.627
Web of Science (2017): Impact factor 2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.28 SJR 0.402 SNIP 0.658
Web of Science (2016): Impact factor 1.569
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 0.77 SJR 0.244 SNIP 0.415
Web of Science (2015): Impact factor 0.959
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 0.87 SJR 0.26 SNIP 0.381
Web of Science (2014): Impact factor 0.76
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 0.65 SJR 0.241 SNIP 0.364
Web of Science (2013): Impact factor 0.833
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.2 SJR 0.456 SNIP 0.61
Web of Science (2012): Impact factor 1.044
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.91 SJR 0.359 SNIP 0.483
Web of Science (2011): Impact factor 1.023
ISI indexed (2011): ISI indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.412 SNIP 0.499
Web of Science (2010): Impact factor 0.982
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.34 SNIP 0.391
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 0.402 SNIP 0.553
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 0.297 SNIP 0.388
Scopus rating (2006): SJR 0.329 SNIP 0.415
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.302 SNIP 0.305
Scopus rating (2004): SJR 0.304 SNIP 0.49
Scopus rating (2003): SJR 0.288 SNIP 0.263
Scopus rating (2002): SJR 0.324 SNIP 0.472
Scopus rating (2001): SJR 0.203 SNIP 0.317
Scopus rating (2000): SJR 0.806 SNIP 0.456
Scopus rating (1999): SJR 0.559 SNIP 0.784
Original language: English
DOIs:
10.1080/10406638.2014.918554
Research output: Research - peer-review ; Journal article – Annual report year: 2015