Oxygen deficiency impacts on burying habitats for lesser sandeel, Ammodytes tobianus, in the inner Danish waters - DTU Orbit (01/04/2019)

Oxygen deficiency impacts on burying habitats for lesser sandeel, Ammodytes tobianus, in the inner Danish waters

Starting in 1980s, the inner Danish waters have yearly been exposed to seasonal oxygen deficiency (hypoxia). Through spatial–temporal interpolation of monitoring data (1998–2005), we investigated oxygen deficiency impacts on suitable burying habitats for lesser sandeel (Ammodytes tobianus). Furthermore, the consequences of a predicted 4 °C temperature increase within this century were investigated. Maps of bottom oxygen deficiency (oxygen saturation ≤ Scrit of sandeel) were overlaid on maps of sediment composition. Throughout the study period (1998–2005), about 8% of the suitable sediments were affected by oxygen deficiency during an average year and 23% in the most severe year. Regional differences underlay the interannual variations. The extent of oxygen deficiency in enclosed regions varied from 20% to 33% of the suitable seabed being affected, whereas in open-water regions oxygen deficiency problems were limited during average years. However, large areas of the open-water seabed experienced oxygen deficiency during severe years. In such years, under a 4.0 °C temperature increase scenario, the extent of oxygen deficiency on open-water suitable patches was predicted to increase from 25% to about 40%.

General information

State: Published
Organisations: Section for Population- and Ecosystem Dynamics, National Institute of Aquatic Resources, Department of Environmental Science and Engineering, Danish Shellfish Centre
Contributors: Behrens, J., Ærtebjerg, G., Petersen, J. K., Carstensen, J.
Pages: 883-895
Publication date: 2009
Peer-reviewed: Yes

Publication information
Journal: Canadian Journal of Fisheries and Aquatic Sciences
Volume: 66
Issue number: 6
ISSN (Print): 0706-652X
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 2.44 SJR 1.329 SNIP 1.036
Web of Science (2017): Impact factor 2.631
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 2.56 SJR 1.388 SNIP 1.185
Web of Science (2016): Impact factor 2.466
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 2.22 SJR 1.267 SNIP 1.025
Web of Science (2015): Impact factor 2.437
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 2.6 SJR 1.476 SNIP 1.379
Web of Science (2014): Impact factor 2.287
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 2.25 SJR 1.439 SNIP 1.086
Web of Science (2013): Impact factor 2.276
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 2.29 SJR 1.359 SNIP 1.232
Web of Science (2012): Impact factor 2.323