Oxygen- and water-induced degradation of an inverted polymer solar cell: the barrier effect

Publication: Research - peer-reviewJournal article – Annual report year: 2011

View graph of relations

The work focuses on the degradation of performance induced by both water and oxygen in an inverted geometry organic photovoltaic device with emphasis on the accumulated barrier effect of the layers comprising the layer stack. By studying the exchange of oxygen in the zinc oxide (ZnO) layer, the barrier effect is reported in both a dry oxygen atmosphere and an oxygen-free humid atmosphere. The devices under study are comprised of a bulk heterojunction formed by poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester sandwiched between a layer of zinc oxide (electron transporting layer) and a layer of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (hole transport layer) and the two electrodes indium tin oxide and silver. Time-of-flight secondary ion mass spectrometry is employed to characterize the accumulated barrier effect. A pronounced barrier effect is observed in the humid atmosphere, correlating well with a long observed lifetime in the same atmosphere.© 2011 Society of Photo-Optical Instrumentation Engineers.
Original languageEnglish
JournalJournal of Photonics for Energy
Publication date2011
Volume1
Issue1
Pages011104-6
DOIs
StatePublished

Bibliographical note

This work was supported by the Danish Strategic Research Council (DSF 2104–05-0052 and
2104–07-0022), EUDP (j. nr. 64009–0050) and PV ERA-NET transnational POLYMOL project
PolyStaR.

CitationsWeb of Science® Times Cited: 4

Keywords

  • electrochemical electrodes, oxygen, conducting polymers, indium compounds, II-VI semiconductors
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 6368437