Oxidative stability of pullulan electrospun fibers containing fish oil: Effect of oil content and natural antioxidants addition

The effect of oil content and addition of natural antioxidants on the morphology and oxidative stability of pullulan ultra-thin fibers loaded with fish oil and obtained by electrospinning was investigated. Pullulan sub-micron fibers containing 10 and 30wt% fish oil were prepared and both presented beads where the oil accumulated. The number of beads was significantly higher in 30wt% oil-loaded fibers. Moreover, fibers containing 30wt% fish oil had a higher oxidative stability when compared to 10wt% oil-loaded fibers, despite its lower encapsulation efficiency (EE) value (67.1±3.1%). The oxidative stability of fibers loaded with 10wt% fish oil (EE=88.5±0.7%) was significantly improved when adding δ-tocopherol (500ppm) and rosemary extract (500ppm) as antioxidants. However, higher concentration of antioxidants (2000ppm δ-tocopherol and 1000ppm rosemary extract) did not further improve the oxidative stability of 10wt% oil-loaded fibers, but had a pro-oxidant effect. Finally, the production of pullulan fibers containing 10wt% fish oil from formic acid solutions increased the oxidative stability of the fibers when compared to the same type of fibers obtained from water solutions. The latter was observed for fibers without and with antioxidants (500ppm of δ-tocopherol and 500ppm of rosemary extract). Practical applications: Encapsulation of omega-3 polyunsaturated fatty acids and addition of antioxidants are the most efficient strategies to protect these lipids against oxidation when incorporating them into food matrices. These results show the feasibility to encapsulate fish oil in pullulan ultra-thin fibers and to improve their oxidative stability by adding natural antioxidants such as δ-tocopherol and rosemary extract. Therefore, this study might open up new opportunities for further technological development in the production of omega-3 nanodelivery systems, which have potential applications in different types of fortified foods. Encapsulation of fish oil in electrospun pullulan fibers stabilized by natural antioxidants.

General information
State: Published
Organisations: National Food Institute, Research group for Bioactives – Analysis and Application, Research group for Nano-Bio Science, Technical University of Denmark
Contributors: García Moreno, P. J., Damberg, C., Chronakis, I. S., Jacobsen, C.
Number of pages: 11
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: European Journal of Lipid Science and Technology
Volume: 119
Issue number: 12
Article number: 1600305
ISSN (Print): 1438-7697
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.22 SJR 0.776 SNIP 1.05
Web of Science (2017): Impact factor 2.2
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.06 SJR 0.712 SNIP 1.042
Web of Science (2016): Impact factor 2.145
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.85 SJR 0.643 SNIP 0.878
Web of Science (2015): Impact factor 1.953
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.98 SJR 0.742 SNIP 1.052
Web of Science (2014): Impact factor 1.812
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.16 SJR 0.863 SNIP 1.122
Web of Science (2013): Impact factor 2.033
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1