Electrohydrodynamic processing is a straightforward and versatile encapsulation technique suitable for the production of nano-microstructures (NMS) (e.g. fibers and capsules) containing bioactive compounds. The process is very gentle and does not require the use of heat, avoiding deterioration of thermolabile active compounds such as fish oil. Moreover, encapsulates produced present a decreased size, which allows their incorporation into food systems without affecting product sensory qualities.

In this work, electrohydrodynamic processing and oxidative stability of NMS containing fish oil were investigated. For that purpose, three different biopolymers namely pullulan, dextran and whey protein concentrate (WPC) were evaluated as encapsulating materials. First, the influence of biopolymer concentration on the physical properties (e.g. viscosity, conductivity and surface tension) of the biopolymer solutions and on the morphology of NMS was assayed. Secondly, the oxidative stability of the biopolymer solutions containing emulsified fish oil during storage (14 days at 40 °C) and of NMS loaded with fish oil (e.g. pullulan fibers and dextran and WPC capsules) was determined. Finally, to improve the oxidative status of the NMS, pullulan fibers, dextran capsules and WPC capsules were produced by adding neat fish oil instead of emulsified fish oil to the biopolymer solutions. These latter NMS presented a higher oxidative stability, which may be due to a better entrapment of the fish oil into biopolymer encapsulates.