Oxidation of Suspended Graphene: Etch Dynamics and Stability Beyond 1000 °C

We study the oxidation of clean suspended mono- and few-layer graphene in real-time by in situ environmental transmission electron microscopy. At an oxygen pressure below 0.1 mbar we observe anisotropic oxidation in which armchair-oriented hexagonal holes are formed with a sharp edge roughness below 1 nm. At a higher pressure, we observe an increasingly isotropic oxidation, eventually leading to irregular holes at a pressure of 6 mbar. In addition, we find that few-layer flakes are stable against oxidation at temperatures up to at least 1000 °C in the absence of impurities and electron beam-induced defects. These findings show first that the oxidation behavior of mono- and few-layer graphene depends critically on the intrinsic roughness, cleanliness and any imposed roughness or additional reactivity from a supporting substrate; and second, the activation energy for oxidation of pristine suspended few-layer graphene is up to 43 % higher than previously reported for graphite. In addition we have developed a cleaning scheme that results in the near complete removal of hydrocarbon residues over the entire visible sample area. These results have implications for applications of graphene where edge roughness can critically affect the performance of devices, and more generally highlights the surprising (meta)stability of the basal plane of suspended bilayer and thicker graphene towards oxidative environments at high temperature.

General information
State: Accepted/In press
Organisations: Department of Physics, Center for Nanostructured Graphene, Center for Electron Nanoscopy, Nanocarbon, Department of Micro- and Nanotechnology
Contributors: Thomsen, J. D., Kling, J., Mackenzie, D. M., Bøggild, P., Booth, T. J.
Publication date: 2019
Peer-reviewed: Yes

Publication information
Journal: ACS Nano
ISSN (Print): 1936-0851
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 14.29 SJR 7.203 SNIP 2.58
Web of Science (2017): Impact factor 13.709
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 13.65 SJR 6.948 SNIP 2.604
Web of Science (2016): Impact factor 13.942
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 13.55 SJR 6.712 SNIP 2.721
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 12.49 SJR 5.981 SNIP 2.721
Web of Science (2014): Impact factor 12.881
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 13.18 SJR 6.672 SNIP 2.735
Web of Science (2013): Impact factor 12.033
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 11.92 SJR 7.162 SNIP 2.685
Web of Science (2012): Impact factor 12.062
ISI indexed (2012): ISI indexed yes