Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers - DTU Orbit (09/12/2018)

Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

A planar trioctahedral iron(II)–iron(III) hydroxide (green rust, GR) intercalated with dodecanoate (GRC12) has been oxidized by dioxygen to produce the corresponding planar iron(III) (hydr)oxide. The formulae of GRC12 and the final iron(III) product (oxGRC12) were determined to be FeII2.00FeIII1.00(OH)5.31(C12H23O2)0.66(SO4)0.51 and FeIII3O2.18(OH)3.13(C12H23O2)0.56(SO4)0.47, respectively. oxGRC12 has the same planar layer structure as GRC12, as revealed by identical powder X‐ray diffraction patterns. The electrostatic interactions between the interlayer dodecanoate (C12) anions and the iron hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy. The Mössbauer quadrupole splitting of the iron(III) doublet increased on oxidation of GRC12, which has been attributed to the distortion of the octahedral sites caused by deprotonation and changes in the coordination site geometry. oxGRC12 is stable in air for more than 2 years. The van der Waals interactions between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide.

General information
State: Published
Organisations: Center for Electron Nanoscopy, University of Copenhagen
Contributors: Huang, L., Ayala‐Luis, K. B., Fang, L., Dalby, K. N., Kasama, T., Koch, C. B., Hansen, C. B.
Pages: 5718-5727
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: European Journal of Inorganic Chemistry
Volume: 2013
Issue number: 33
ISSN (Print): 1434-1948
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.28 SJR 0.828 SNIP 0.626
Web of Science (2017): Impact factor 2.507
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.26 SJR 0.838 SNIP 0.649
Web of Science (2016): Impact factor 2.444
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.58 SJR 0.983 SNIP 0.728
Web of Science (2015): Impact factor 2.686
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.7 SJR 1.055 SNIP 0.813
Web of Science (2014): Impact factor 2.942
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.82 SJR 1.067 SNIP 0.809
Web of Science (2013): Impact factor 2.965
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.88 SJR 1.249 SNIP 0.901
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1