Overexpression of functional human oxidosqualene cyclase in Escherichia coli - DTU Orbit (23/01/2019)

Overexpression of functional human oxidosqualene cyclase in *Escherichia coli*

The generation of multicyclic scaffolds from linear oxidosqualene by enzymatic polycyclization catalysis constitutes a cornerstone in biology for the generation of bioactive compounds. Human oxidosqualene cyclase (hOSC) is a membrane-bound triterpene cyclase that catalyzes the formation of the tetracyclic steroidal backbone, a key step in cholesterol biosynthesis. Protein expression of hOSC and other eukaryotic oxidosqualene cyclases has traditionally been performed in yeast and insect cells, which has resulted in protein yields of 2.7 mg protein/g cells (hOSC in *Pichia pastoris*) after 48 h of expression. Herein we present, to the best of our knowledge, the first functional expression of hOSC in the model organism *Escherichia coli*. Using a codon-optimized gene and a membrane extraction procedure for which detergent is immediately added after cell lysis, a protein yield of 2.9 mg/g bacterial cells was achieved after four hours of expression. It is envisaged that the isolation of high amounts of active eukaryotic oxidosqualene cyclase in an easy to handle bacterial system will be beneficial in pharmacological, biochemical and biotechnological applications.

General information

State: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, High Throughput Molecular Bioscience, KTH - Royal Institute of Technology
Contributors: Kürten, C., Uhlén, M., Syrén, P.
Number of pages: 8
Pages: 46-53
Publication date: 2015
Peer-reviewed: Yes

Publication information

Journal: Protein Expression and Purification
Volume: 115
ISSN (Print): 1046-5928
Ratings:
 BFI (2019): BFI-level 1
 Web of Science (2019): Indexed yes
 BFI (2018): BFI-level 1
 Web of Science (2018): Indexed yes
 BFI (2017): BFI-level 1
 Scopus rating (2017): CiteScore 1.42 SJR 0.648 SNIP 0.598
 Web of Science (2017): Impact factor 1.338
 Web of Science (2017): Indexed yes
 BFI (2016): BFI-level 1
 Scopus rating (2016): CiteScore 1.46 SJR 0.684 SNIP 0.648
 Web of Science (2016): Impact factor 1.351
 Web of Science (2016): Indexed yes
 BFI (2015): BFI-level 1
 Scopus rating (2015): CiteScore 1.55 SJR 0.746 SNIP 0.756
 Web of Science (2015): Indexed yes
 BFI (2014): BFI-level 1
 Scopus rating (2014): CiteScore 1.8 SJR 0.81 SNIP 0.822
 Web of Science (2014): Impact factor 1.695
 BFI (2013): BFI-level 1
 Scopus rating (2013): CiteScore 1.61 SJR 0.724 SNIP 0.715
 Web of Science (2013): Impact factor 1.508
 ISI indexed (2013): ISI indexed yes
 BFI (2012): BFI-level 1
 Scopus rating (2012): CiteScore 1.57 SJR 0.713 SNIP 0.775
 Web of Science (2012): Impact factor 1.429
 ISI indexed (2012): ISI indexed yes
 BFI (2011): BFI-level 1
 Scopus rating (2011): CiteScore 1.66 SJR 0.798 SNIP 0.778
Web of Science (2011): Impact factor 1.587
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 0.806 SNIP 0.79
Web of Science (2010): Impact factor 1.644
Web of Science (2010): Indexed yes
BFI (2009): BFI-level 1
Scopus rating (2009): SJR 0.952 SNIP 0.823
BFI (2008): BFI-level 1
Scopus rating (2008): SJR 1.128 SNIP 0.781
Web of Science (2008): Indexed yes
Scopus rating (2007): SJR 1.039 SNIP 0.807
Web of Science (2007): Indexed yes
Scopus rating (2006): SJR 0.944 SNIP 0.727
Web of Science (2006): Indexed yes
Scopus rating (2005): SJR 0.869 SNIP 0.706
Scopus rating (2004): SJR 0.733 SNIP 0.699
Scopus rating (2003): SJR 0.888 SNIP 0.669
Web of Science (2003): Indexed yes
Scopus rating (2002): SJR 0.876 SNIP 0.576
Web of Science (2002): Indexed yes
Scopus rating (2001): SJR 0.91 SNIP 0.632
Web of Science (2001): Indexed yes
Scopus rating (2000): SJR 0.942 SNIP 0.692
Web of Science (2000): Indexed yes
Scopus rating (1999): SJR 1.027 SNIP 0.643
Original language: English
Keywords: E. coli, Expression and purification, Membrane protein, Oxidosqualene cyclase, Triterpene cyclase
DOIs: 10.1016/j.pep.2015.04.015
Source: FindIt
Source-ID: 2265251188
Research output: Research - peer-review, Journal article – Annual report year: 2015