Osmotic stress tolerance in semi-terrestrial tardigrades

Osmotic stress tolerance in semi-terrestrial tardigrades

Little is known about ionic and osmotic stress tolerance in tardigrades. Here, we examine salt stress tolerance in Ramazzottius oberhaeuseri and Echiniscus testudo from Nivå (Denmark) and address whether limno-terrestrial tardigrades can enter a state of quiescence (osmobiosis) in the face of high external osmolyte concentrations. Direct transfers into NaCl solutions showed an upper tolerance level of around 600 mOsm kg−1 in R. oberhaeuseri and 200 mOsm kg−1 in E. testudo. During salt exposures, R. oberhaeuseri contracted into a 'tun', whereas E. testudo remained active leaving it more susceptible to acute effects of the ions. Further experiments focused on the more resilient R. oberhaeuseri, which entered a tun and readily regained activity when directly exposed to polyethylene glycol and sucrose of up to 872 ± 0 and 813 ± 3 mOsm kg−1, respectively, revealing a higher tolerance towards non-ionic osmolytes as compared to NaCl. Ramazzottius oberhaeuseri furthermore readily regained activity following gradual increases in non-ionic osmolytes and NaCl of up to 2434 ± 28 and 1905 ± 3 mOsm kg−1, respectively, showing that short-term acclimation promoted salt stress tolerance. Our results suggest that the limno-terrestrial R. oberhaeuseri enters a state of quiescence in the face of high external osmotic pressure and that it, in this state, is highly tolerant of ionic and osmotic stress.

General information

State: Published
Organisations: Department of Environmental Engineering, Water Technologies, University of Copenhagen
Number of pages: 7
Pages: 912-918
Publication date: 2016
Peer-reviewed: Yes

Publication information

Journal: Zoological Journal of the Linnean Society
Volume: 178
Issue number: 4
ISSN (Print): 0024-4082
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.76 SJR 1.188 SNIP 1.432
Web of Science (2017): Impact factor 2.685
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.72 SJR 1.211 SNIP 1.549
Web of Science (2016): Impact factor 2.711
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 2.6 SJR 1.497 SNIP 1.45
Web of Science (2015): Impact factor 2.316
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 2.77 SJR 1.519 SNIP 1.589
Web of Science (2014): Impact factor 2.717
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.8 SJR 1.351 SNIP 1.645
Web of Science (2013): Impact factor 2.658
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 2.55 SJR 1.295 SNIP 1.612
Web of Science (2012): Impact factor 2.583
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 2.26 SJR 1.121 SNIP 1.46
Web of Science (2011): Impact factor 2.433
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 1.403 SNIP 1.632
Web of Science (2010): Impact factor 2.319