Orbital angular momentum modes emission from a silicon photonic integrated device for km-scale data-carrying fiber transmission - DTU Orbit (28/11/2018)

Orbital angular momentum modes emission from a silicon photonic integrated device for km-scale data-carrying fiber transmission

We experimentally demonstrate orbital angular momentum (OAM) modes emission from a high emission efficiency OAM emitter for 20-Gbit/s quadrature phase-shift keying (QPSK) carrying data transmission in few-mode fiber (FMF). The device is capable of emitting vector optical vortices carrying well-defined OAM efficiently with the efficiency of the device >37%. Seven modes propagate through a 2-km two-mode and a 3.6-km three-mode FMF with measured optical signal-to-noise ratio (OSNR) penalties less than 4 dB at a bit-error rate (BER) of 2 x 10\(^{-3}\). The demonstrations with favorable performance pave the way to incorporate silicon photonic integrated devices as transceivers in an OAM-enabled optical fiber communication link. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

General information
State: Published
Organisations: Department of Photonics Engineering, Nanophotonic Devices, High-Speed Optical Communication, Centre of Excellence for Silicon Photonics for Optical Communications, Huazhong University of Science and Technology, Sun Yat-Sen University, Fiberhome Telecommunication Technologies Co. Ltd, Wuhan National Laboratory for Optoelectronics
Pages: 15471-15479
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Optics Express
Volume: 26
Issue number: 12
ISSN (Print): 1094-4087
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 3.74 SJR 1.519 SNIP 1.567
Web of Science (2017): Impact factor 3.356
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 3.48 SJR 1.532 SNIP 1.544
Web of Science (2016): Impact factor 3.307
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 3.78 SJR 1.91 SNIP 1.674
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 4.18 SJR 2.313 SNIP 2.124
Web of Science (2014): Impact factor 3.488
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.38 SJR 2.337 SNIP 2.196
Web of Science (2013): Impact factor 3.525
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 3.85 SJR 2.562 SNIP 2.108
Web of Science (2012): Impact factor 3.546
ISI indexed (2012): ISI indexed yes