Optimizing operation costs of the heating system of a household using model predictive control considering a local PV installation - DTU Orbit (16/01/2019)

This paper presents a model predictive controller developed in order to minimize the cost of grid energy consumption and maximize the amount of energy consumed from a local photovoltaic (PV) installation. The usage of as much locally produced renewable energy sources (RES) as possible, diminishes the effects of their large penetration in the distribution grid and reduces overloading the grid capacity, which is an increasing problem for the power system. The controller uses 24 hour prediction data for the ambient temperature, the solar irradiance, and for the PV output power. Simulation results of a thermostatic controller, a MPC with grid price optimization, and the proposed MPC are presented and discussed.

General information
State: Published
Organisations: Department of Electrical Engineering, Center for Electric Power and Energy
Contributors: Koch-Ciobotaru, C., Isleifsson, F. R., Gehrke, O.
Pages: 431-436
Publication date: 2012

Host publication information
Title of host publication: SIMULTECH 2012 - Proceedings of the 2nd International Conference on Simulation and Modeling Methodologies, Technologies and Applications
Publisher: SciTePress
ISBN (Print): 9789898565204
Keywords: Costs, Energy utilization, Heat storage, Heating, Heating equipment, Model predictive control, Optimization, Renewable energy resources, Predictive control systems
URLs:
http://www.simultech.org/?y=2012
Source: dtu
Source-ID: n:oai:DTIC-ART:compendex/373354156::20873
Research output: Research - peer-review › Article in proceedings – Annual report year: 2012