Optimization in liner shipping - DTU Orbit (29/12/2018)

Optimization in liner shipping

Seaborne trade is the lynchpin in almost every international supply chain, and about 90% of non-bulk cargo worldwide is transported by container. In this survey we give an overview of data-driven optimization problems in liner shipping. Research in liner shipping is motivated by a need for handling still more complex decision problems, based on big data sets and going across several organizational entities. Moreover, liner shipping optimization problems are pushing the limits of optimization methods, creating a new breeding ground for advanced modelling and solution methods. Starting from liner shipping network design, we consider the problem of container routing and speed optimization. Next, we consider empty container repositioning and stowage planning as well as disruption management. In addition, the problem of bunker purchasing is considered in depth. In each section we give a clear problem description, bring an overview of the existing literature, and go in depth with a specific model that somehow is essential for the problem. We conclude the survey by giving an introduction to the public benchmark instances LINER-LIB. Finally, we discuss future challenges and give directions for further research.

General information
State: Published
Contributors: Broe, B. D., Karsten, C. V., Pisinger, D.
Pages: 1-35
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: 4 O R
Volume: 15
Issue number: 1
ISSN (Print): 1619-4500
Ratings:
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 1.47 SJR 0.825 SNIP 0.999
Web of Science (2017): Impact factor 1.206
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 1.83 SJR 1.463 SNIP 1.564
Web of Science (2016): Impact factor 1.559
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.19 SJR 0.974 SNIP 1.022
Web of Science (2015): Impact factor 1.371
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.1 SJR 0.739 SNIP 1.078
Web of Science (2014): Impact factor 1
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.31 SJR 1.553 SNIP 1.382
Web of Science (2013): Impact factor 0.918
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 0.9 SJR 0.698 SNIP 0.939
Web of Science (2012): Impact factor 0.73
ISI indexed (2012): ISI indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 0.93 SJR 0.783 SNIP 1.064
Web of Science (2011): Impact factor 0.323
ISI indexed (2011): ISI indexed no
Web of Science (2011): Indexed yes