Optimization in Friction Stir Welding - With Emphasis on Thermo-mechanical Aspects

Publication: Research - peer-reviewBook – Annual report year: 2011

View graph of relations

This book deals with the challenging multidisciplinary task of combining variant thermal and thermo-mechanical simulations for the manufacturing process of friction stir welding (FSW) with numerical optimization techniques in the search for optimal process parameters. The FSW process is characterized by multiphysics involving solid material flow, heat transfer, thermal softening, recrystallization and the formation of residual stresses. Initially, the thermal models were addressed since they in essence constitute the basis of all other models of FSW. Following this, several integrated thermo-mechanical models of the process were developed to simulate temperature and stress evolution during welding and subsequent cooling, i.e. eventually leading to the residual stress state and reduced mechanical properties, as well as to predict the final weld's load carrying capacity. These models were finally combined with classical single-objective and evolutionary multi-objective optimization algorithms (i.e. SQP and NSGA-II), to find the optimum process parameters (heat input, rotational and traverse welding speeds) that would result in favorable thermo-mechanical conditions for the process.
Original languageEnglish
Publication date2011
PublisherLAP Lambert Academic Publishing
Number of pages232
ISBN (print)3843394989
StatePublished
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

ID: 5479492