Optimal foraging in marine ecosystem models: selectivity, profitability and switching

Publication: Research - peer-reviewJournal article – Annual report year: 2013



View graph of relations

One of the most troubled aspects of ecosystem models is the use of rather arbitrary feeding and preference functions. The predictions of plankton functional type models have been shown to be highly sensitive to the choice of foraging model, particularly in multiple prey situations. Here we propose ecological mechanics and evolutionary logic as a solution to diet selection in ecosystem models. When a predator can consume a range of prey items it has to choose which foraging mode to use, which prey to ignore and which ones to pursue, and animals are known to be particularly skilled in adapting their diets towards the most profitable prey items. We present a simple algorithm for plankton feeding on a size-spectrum of prey with particular energetic content, handling times and capture probabilities. We show that the optimal diet breadth changes with relative densities, but in a different way to the preference functions commonly used in models today. Indeed, depending on prey class resolution, optimal foraging can yield feeding rates that are considerably different from the ‘switching functions’ often applied in marine ecosystem models. Dietary inclusion is dictated by two optimality choices: 1) the diet breadth and 2) the actual feeding mode. The optimality model does not generate ‘safety in low densities’, as the ‘switching function’ does in ecosystem models, unless predators are shifting feeding mode adaptively. The actual diet, feeding rate and energy flux in ecosystem models can be determined by letting predators maximize energy intake or more properly, some measure of fitness where predation risk and cost are also included. An optimal foraging or fitness maximizing approach will give marine ecosystem models a sound principle to determine trophic interactions
Original languageEnglish
JournalMarine Ecology Progress Series
Pages (from-to)91-101
StatePublished - 2013
CitationsWeb of Science® Times Cited: 19
Download as:
Download as PDF
Select render style:
Download as HTML
Select render style:
Download as Word
Select render style:

Download statistics

No data available

ID: 15649186