Optical simulations for design, alignment, and performance prediction of silicon pore optics for the ATHENA x-ray telescope - DTU Orbit (19/12/2018)

Optical simulations for design, alignment, and performance prediction of silicon pore optics for the ATHENA x-ray telescope

The ATHENA X-ray observatory is a large-class ESA approved mission, with launch scheduled in 2028. The technology of silicon pore optics (SPO) was selected as baseline to assemble ATHENA’s optic with hundreds of mirror modules, obtained by stacking wedged and ribbed silicon wafer plates onto silicon mandrels to form the Wolter-I configuration. In the current configuration, the optical assembly has a 3 m diameter and a 2 m² effective area at 1 keV, with a required angular resolution of 5 arcsec. The angular resolution that can be achieved is chiefly the combination of 1) the focal spot size determined by the pore diffraction, 2) the focus degradation caused by surface and profile errors, 3) the aberrations introduced by the misalignments between primary and secondary segments, 4) imperfections in the co-focality of the mirror modules in the optical assembly. A detailed simulation of these aspects is required in order to assess the fabrication and alignment tolerances; moreover, the achievable effective area and angular resolution depend on the mirror module design. Therefore, guaranteeing these optical performances requires: a fast design tool to find the most performing solution in terms of mirror module geometry and population, and an accurate point spread function simulation from local metrology and positioning information. In this paper, we present the results of simulations in the framework of ESA-financed projects (SIMPOSiuM, ASPHEA, SPIRIT), in preparation of the ATHENA X-ray telescope, analyzing the mentioned points: 1) we deal with a detailed description of diffractive effects in an SPO mirror module, 2) we show ray-tracing results including surface and profile defects of the reflective surfaces, 3) we assess the effective area and angular resolution degradation caused by alignment errors between SPO mirror module’s segments, and 4) we simulate the effects of co-focality errors in X-rays and in the UV optical bench used to study the mirror module alignment and integration.

General information
State: Published
Organisations: National Space Institute, Astrophysics and Atmospheric Physics, Department of Physics, Neutrons and X-rays for Materials Physics, Cosine Measurement Systems, Technical University of Denmark, INAF - Brera Astronomical Observatory, ESTEC, Media Lario S.r.l., Polytechnic University of Milan
Number of pages: 33
Publication date: 2017

Host publication information
Title of host publication: Optics for EUV, X-Ray, and Gamma-Ray Astronomy VIII
Volume: 10399
Publisher: SPIE - International Society for Optical Engineering
Editors: O’Dell, S. L., Pareschi, G.
Article number: 103990H
Keywords: ATHENA, Silicon pore optics, Design, Simulation, Alignment, Diffraction
Electronic versions:
103990H.pdf
DOIs:
10.1117/12.2274905

Bibliographical note
Conference Presentation
Source: FindIt
Source-ID: 2392643974
Research output: Research - peer-review › Article in proceedings – Annual report year: 2017