Operational modal analysis on a VAWT in a large wind tunnel using stereo vision technique
- DTU Orbit (21/04/2019)

Operational modal analysis on a VAWT in a large wind tunnel using stereo vision technique

This paper is about development and use of a research based stereo vision system for vibration and operational modal analysis on a parked, 1-kW, 3-bladed vertical axis wind turbine (VAWT), tested in a wind tunnel at high wind. Vibrations were explored experimentally by tracking small deflections of the markers on the structure with two cameras, and also numerically, to study structural vibrations in an overall objective to investigate challenges and to prove the capability of using stereo vision. Two high speed cameras provided displacement measurements at no wind speed interference. The displacement time series were obtained using a robust image processing algorithm and analyzed with data-driven stochastic subspace identification (DD-SSI) method. In addition of exploring structural behaviour, the VAWT testing gave us the possibility to study aerodynamic effects at Reynolds number of approximately 2×10^5. VAWT dynamics were simulated using HAWC2. The stereo vision results and HAWC2 simulations agree within 4% except for mode 3 and 4. The high aerodynamic damping of one of the blades, in flatwise motion, would explain the gap between those two modes from simulation and stereo vision. A set of conventional sensors, such as accelerometers and strain gauges, are also measuring rotor vibration during the experiment. The spectral analysis of the output signals of the conventional sensors agrees the stereo vision results within 4% except for mode 4 which is due to the inaccuracy of spectral analysis in picking very closely spaced modes. Finally, the uncertainty of the 3D displacement measurement was evaluated by applying a generalized method based on the law of error propagation, for a linear camera model of the stereo vision system.

General information
Publication status: Published
Organisations: Department of Wind Energy, Test and Measurements, Wind turbine loads & control
Contributors: Najafi, N., Schmidt Paulsen, U.
Pages: 405-416
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Energy
Volume: 125
ISSN (Print): 0360-5442
Ratings:
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 5.6 SJR 1.99 SNIP 1.923
Web of Science (2017): Impact factor 4.968
Web of Science (2017): Indexed yes
Original language: English
Keywords: Data-driven SSI, HAWC2, Operational modal analysis, Stereo vision, Vertical axis wind turbine, Wind energy
Electronic versions:
1_s2_0_S036054421730316X_main.pdf
DOIs:
10.1016/j.energy.2017.02.133

Bibliographical note
This is an open access article under the CC BY-NC-ND license.
Source: FindIt
Source-ID: 2356744238
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review