Operational measures to mitigate and reverse the potential modal shifts due to environmental legislation - DTU Orbit (10/02/2019)

Operational measures to mitigate and reverse the potential modal shifts due to environmental legislation

On 1 January 2015, the sulphur upper limit for marine fuels used within sulphur emission control areas was lowered from 1% to 0.1%, with which vessels can comply only through using pricier ultra-low-sulphur fuel, or investing in abatement technologies. A potential increase of fuel prices could lead to closures of services due to the combined effects of loss of market due to higher freight rates, and increased operational costs. This paper builds on previous work allowing the modelling of modal shifts between sea and land-based options, and assesses the potential of operational measures that ship-owners can deploy to cope with the threat of the low-sulphur requirements. The measures include speed reduction, change of service frequency, use of alternative fuels such as liquefied natural gas, investments in scrubber systems, and improved fleet assignment. The proposed measures are tested on a set of case studies for services that are part of a short sea shipping network of a leading Ro-Ro operator. The results of this work can be useful to practitioners seeking to design new strategies that improve the resilience of their network, as well as to regulatory bodies designing new regulation that could have negative implications on certain sectors.

General information
State: Published
Organisations: Department of Management Engineering, Management Science, Operations Management, Transport DTU
Contributors: Zis, T., Psaraftis, H. N.
Number of pages: 16
Publication date: 28 Apr 2019
Peer-reviewed: Yes

Publication information
Journal: Maritime Policy and Management
Volume: 46
Issue number: 1
ISSN (Print): 0308-8839
Ratings:
BFI (2019): BFI-level 1
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 1
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.67 SJR 1.129 SNIP 1.53
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 2.04 SJR 0.919 SNIP 1.559
Web of Science (2016): Impact factor 1.741
BFI (2015): BFI-level 1
Scopus rating (2015): CiteScore 1.59 SJR 1.55 SNIP 1.517
Web of Science (2015): Impact factor 1.22
BFI (2014): BFI-level 1
Scopus rating (2014): CiteScore 1.77 SJR 1.305 SNIP 1.434
Web of Science (2014): Impact factor 1.309
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 1.96 SJR 1.022 SNIP 1.516
Web of Science (2013): Impact factor 1.447
ISI indexed (2013): ISI indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 1.14 SJR 0.679 SNIP 1.178
Web of Science (2012): Impact factor 0.816
ISI indexed (2012): ISI indexed no
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 1
Scopus rating (2011): CiteScore 1.21 SJR 1.057 SNIP 1.279
Web of Science (2011): Impact factor 0.743
ISI indexed (2011): ISI indexed no