Open Power System Data: Frictionless data for electricity system modelling - DTU Orbit (13/01/2019)

Open Power System Data: Frictionless data for electricity system modelling

The quality of electricity system modelling heavily depends on the input data used. Although a lot of data is publicly available, it is often dispersed, tedious to process and partly contains errors. We argue that a central provision of input data for modelling has the character of a public good: it reduces overall societal costs for quantitative energy research as redundant work is avoided, and it improves transparency and reproducibility in electricity system modelling. This paper describes the Open Power System Data platform that aims at realising the efficiency and quality gains of centralised data provision by collecting, checking, processing, aggregating, documenting and publishing data required by most modellers. We conclude that the platform can provide substantial benefits to energy system analysis by raising efficiency of data pre-processing, providing a method for making data pre-processing for energy system modelling traceable, flexible and reproducible and improving the quality of original data published by data providers.

General information
State: Published
Organisations: Technical University of Denmark, Department of Management Engineering, Systems Analysis, University of Basel, University of Flensburg, Technical University of Berlin, Hertie School of Governance, Tennet TSB B.V., Humboldt University of Berlin, Neon Neue Energieökonomik GmbH, German Institute for Economic Research
Pages: 401-409
Publication date: 15 Feb 2019
Peer-reviewed: Yes

Publication information
Journal: Applied Energy
Volume: 236
ISSN (Print): 0306-2619
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 8.44 SJR 3.162 SNIP 2.765
Web of Science (2017): Impact factor 7.9
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.78 SJR 3.011 SNIP 2.61
Web of Science (2016): Impact factor 7.182
Web of Science (2016): Indexed yes
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 6.4 SJR 2.835 SNIP 2.593
Web of Science (2015): Impact factor 5.746
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.93 SJR 3.158 SNIP 3.218
Web of Science (2014): Impact factor 5.613
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 6.59 SJR 3.06 SNIP 3.346
Web of Science (2013): Impact factor 5.261
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 1
Scopus rating (2012): CiteScore 5.69 SJR 2.778 SNIP 3.076
Web of Science (2012): Impact factor 4.781
ISI indexed (2012): ISI indexed yes