On the use of liposome controls in studies investigating the clinical potential of extracellular vesicle-based drug delivery systems - A commentary - DTU Orbit (23/12/2018)

The field of extracellular vesicle (EV)-based drug delivery systems has evolved significantly through the recent years, and numerous studies suggest that these endogenous nanoparticles can function as efficient drug delivery vehicles in a variety of diseases. Many characteristics of these EV-based drug delivery vehicles suggest them to be superior at residing in the systemic circulation and possibly at mediating therapeutic effects compared to synthetic drug delivery vehicles, e.g. liposomes. In this Commentary, we discuss how some currently published head-to-head comparisons of EVs versus liposomes are weakened by the inadequate choice of liposomal formulation, and encourage researchers to implement better controls to show any potential superiority of EVs over other synthetic nanoparticles.

General information
State: Published
Organisations: Department of Micro- and Nanotechnology, Colloids and Biological Interfaces, Aalborg University
Contributors: Johnsen, K. B., Gudbergsson, J. M., Duroux, M., Moos, T., Andresen, T. L., Simonsen, J. B.
Pages: 10-14
Publication date: 2018
Peer-reviewed: Yes

Publication information
Journal: Journal of Controlled Release
Volume: 269
ISSN (Print): 0168-3659
Ratings:
BFI (2018): BFI-level 2
Web of Science (2018): Indexed yes
BFI (2017): BFI-level 2
Scopus rating (2017): CiteScore 7.9 SJR 2.684 SNIP 1.802
Web of Science (2017): Impact factor 7.877
Web of Science (2017): Indexed yes
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 7.56 SJR 2.463 SNIP 1.85
Web of Science (2016): Impact factor 7.786
BFI (2015): BFI-level 2
Scopus rating (2015): CiteScore 8.11 SJR 2.738 SNIP 2.074
Web of Science (2015): Impact factor 7.441
Web of Science (2015): Indexed yes
BFI (2014): BFI-level 2
Scopus rating (2014): CiteScore 6.86 SJR 2.438 SNIP 2.092
Web of Science (2014): Impact factor 7.705
Web of Science (2014): Indexed yes
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 6.31 SJR 2.441 SNIP 2.023
Web of Science (2013): Impact factor 7.261
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
BFI (2012): BFI-level 2
Scopus rating (2012): CiteScore 5.84 SJR 2.454 SNIP 2.075
Web of Science (2012): Impact factor 7.633
ISI indexed (2012): ISI indexed yes
Web of Science (2012): Indexed yes
BFI (2011): BFI-level 2
Scopus rating (2011): CiteScore 6.33 SJR 2.763 SNIP 2.089
Web of Science (2011): Impact factor 6.499
ISI indexed (2011): ISI indexed yes
Web of Science (2011): Indexed yes