On the phase-noise and phase-error performances of multiphase LC CMOS VCOs

Publication: Research - peer-reviewJournal article – Annual report year: 2004

Documents

DOI

View graph of relations

This paper presents an analysis of phase noise in multiphase LC oscillators, and measurement results for several CMOS quadrature-voltage-controlled-oscillators (QVCOs) working in the 2-GHz frequency range. The phase noise data for a so-called BS-QVCO (- 140 dBc/Hz or less at 3 MHz frequency offset from the carrier, for a power consumption of 20.8 mW and a figure-of-merit of 184 dBc/Hz) show that phase noise performances are close to the previously derived limits. A systematic cause of departure from ideal quadrature between QVCO signals is also analyzed and measured experimentally, and a compact LC-tank layout that removes this source of phase error is proposed. A TS-QVCO designed with this technique shows a phase-noise figure-of-merit improvement of 4 dB, compared to a previous implementation. The measured equivalent phase error for all QVCOs is between 0.6degrees and 1degrees.
Original languageEnglish
JournalI E E E Journal of Solid State Circuits
Publication date2004
Volume39
Issue11
Pages1883-1893
ISSN0018-9200
DOIs
StatePublished

Bibliographical note

Copyright: 2004 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE

CitationsWeb of Science® Times Cited: 96

Keywords

  • quadrature signal generation, RF, CMOS, phase noise, voltage-controlled oscillators (VCOs)
Download as:
Download as PDF
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
PDF
Download as HTML
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
HTML
Download as Word
Select render style:
APAAuthorCBEHarvardMLAStandardVancouverShortLong
Word

Download statistics

No data available

ID: 4109916